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Abstract. Serverless computing leverages the design of complex appli-
cations as the composition of small, individual functions to simplify de-
velopment and operations. However, this flexibility complicates reasoning
about the trade-off between performance and costs, requiring accurate
models to support prediction and configuration decisions. Established
performance model inference from execution traces is typically more ex-
pensive for serverless applications due to the significantly larger topolo-
gies and numbers of parameters resulting from the higher fragmentation
into small functions. On the other hand, individual functions tend to
embed simpler logic than larger services, which enables inferring some
structural information by reasoning directly from their source code. In
this paper, we use static control and data flow analysis to extract topo-
logical and parametric dependencies among interacting functions from
their source code. To enhance the accuracy of model parameterization, we
devise an instrumentation strategy to infer performance profiles driven
by code analysis. We then build a compact layered queueing network
(LQN) model of the serverless workflow based on the static analysis and
code profiling data. We evaluated our method on serverless workflows
with several common composition patterns deployed on Azure Functions,
showing it can accurately predict the performance of the application un-
der different resource provisioning strategies and workloads with a mean
error under 7.3%.
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1 Introduction

Serverless computing is a novel cloud computing paradigm that aims at mak-
ing operations concerns transparent to developers and cloud users [9, 13]. It has
recently gained increasing attention in industry due to the potential for signifi-
cant cost savings and on-demand billing modes. Function-as-a-Service (FaaS) is
a cloud computing execution model introduced within serverless computing that
allows developers to deploy single functions as basic building blocks [9]. Com-
pared to monolithic applications and microservice-based architectures, FaaS-
based applications can be triggered and served by events (e.g., HTTP requests)
and executed on-demand. There are several cloud vendors providing FaaS capa-
bilities like AWS Lambda, Google Cloud Functions and Microsoft Azure Func-
tions, as well as open-source alternatives such as OpenFaaS or KNative.
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Developers can write individual serverless functions and compose them in
complex workflows deployed on the FaaS platforms. FaaS platforms enable auto-
matic management, scaling, and billing of the execution of FaaS-based workflows
to take over most operational efforts from developers and users. However, main-
taining Quality-of-Service (QoS) requirements and meeting service-level agree-
ments (SLAs) of FaaS applications remains an outstanding concern [26].

Performance models provide analytical prediction and simulation results to
help to reason about and improve the quality of FaaS-based applications. Ac-
curate and efficient performance modeling benefits not only the developers and
operators, but also FaaS providers. On the one hand, with performance mod-
els, the developers have a better understanding and prediction capabilities of
the quality of the application under different workloads and deployment con-
figurations, which may also help direct development decisions. On the other
hand, FaaS providers can take advantage of accurate cost prediction and re-
source management, inferring related metrics from performance models. There
are well-established stochastic models such as queueing networks [16], layered
queueing networks (LQNs) [14], Petri nets [22] that can describe the system
with a simplified abstraction. Among them, LQNs are particularly suitable for
capturing the dependencies and interactions between different FaaS functions.

Building performance models for FaaS applications accurately and efficiently
is a non-trivial problem. However, differently from monolithic or service-based
applications that aggregate larger functionalities behind each endpoint, the source
code of individual serverless functions is usually more focused and succinct, ren-
dering it amenable to static code analysis to infer additional information about
the internals of FaaS applications. Our insight is to exploit established control
and data flow analysis methods [23] to improve the granularity of performance
models for FaaS-based applications, ultimately improving the accuracy of models
and performance predictions. However, building LQN models for FaaS functions
and workflows is still challenging due to the information gap between modeling
and monitoring granularity compared to the classical performance modeling for
web applications and microservice-based applications.

The first challenge in building LQN models for FaaS applications is learning
the topological graph representing the application behavior on both inter- and
intra-function levels. Attempting to accurately and completely reconstruct this
structure only from traces or monitoring data may be difficult because it relies
on the test inputs capable of covering all the relevant execution traces. However,
when functions are observed as black-boxes, i.e., without knowing which parts
of their code have been exercised, there is no reliable way to ascertain whether
any behavior has remained uncovered. In turn, the LQN model inferred from
such partial traces may itself be incomplete.

Additionally, appropriate model parameterization is critical to define effec-
tive and efficient parameter estimation methods. Estimating service demand for
individual endpoints from system monitoring measurements, like utilization or
response time, is particularly challenging, with most methods typically resorting
to regression algorithms to combine different measurements [25]. However, these
methods estimate service demand based on queueing theory and may lead to in-
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accurate results due to the uncertainty introduced by the approximation based
on the queueing theory.

This paper proposes to build performance models for FaaS workflows com-
bining static analysis and code profiling. We assume that the source code and
configuration metadata of FaaS functions and workflows are accessible. To learn
the topology of the model, we apply static analysis on the source code to obtain
the inter-procedural call graph of the orchestrator defining the workflow com-
posing the individual functions, and the intra-procedural control flows for each
function. To more accurately characterize the model parameterization, we pro-
pose to inject code to hook system function calls during the profiling stage and
capture the distribution of the service demand based on profiling data instead
of estimating based on system measurement. The profiling data, being measured
within the process executing the function, depends only on the function inputs,
while it is largely workload-independent since queueing time does not affect the
measures. Then, we derive the LQN models for serverless workflows by mapping
the static graphs and code profiling data. In the experiments, we implement
FaaS-based workflows representing different function compositing patterns to
evaluate our proposed method. We compare the results by solving LQN to the
data collected from the workflow execution. The experimental results yield model
predictions with a mean error under 7.3% in all the evaluated scenarios.

The remainder of the paper is structured as follows. In Section 2, we give
background on static analysis and LQN. In Section 3, we discuss the method-
ology of building LQN model based on static analysis and code profiling. In
Section 4, we conduct experiments with different FaaS workflows to evaluate the
effectiveness and efficiency of our proposed modeling method. In Sections 5 and
6, respectively, we discuss related work and draw conclusions.

2 Background

Static Analysis of Source Code. Static analysis is widely used to infer in-
formation about a program by reasoning on the structure and features of its
source code, or convenient intermediate representations, without actually exe-
cuting the program [23] (as opposed to dynamic analyses that require executing
the program). For example, it can infer which statements in a program affect
the value of a variable at a specific line. Two widely used representations that
can be statically extracted are control and data flow graph. A control flow graph
(CFG) captures (a superset of) all the possible paths that can be executed at
runtime. A CFG represents how the evaluation of conditional statements (e.g.,
branches and loops) determines the next code block to be executed. At intra-
procedural level, CFGs represent the dependencies between code blocks and all
the possible execution orderings, subject to the decisions at conditional nodes.
Intra-procedural CFGs can be related to one another via the program call graph.
A call graph (CG) captures for each caller function all the callee functions it can
invoke, providing an inter-procedural representation of the dependencies and
interactions among functions. Instead, a data flow graph represents the propa-
gation of information throughout program statements and variables [18]. Static
data flow analysis, for example, can compute execution paths that propagate
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Fig. 1: An example LQN model
values of interests from their sources to sinks. Data can flow through dependent
nodes of a CFG, e.g., through the arguments of a function invocation or the de-
cision at a conditional node. Taint analysis is a data flow analysis that can track
which program variables at which code locations are affected by the values of a
function’s inputs. While typically used for security purposes [27], taint analysis
can capture what input information can flow to other function invocations.
Layered Queuing Networks. LQNs are an extended queuing network for-
malism that has been widely used to abstract web applications [17]. The main
components of LQN models covered in this paper are shown with an example
in Figure 1. The large parallelograms, denoted as Task, represent software and
hardware entities. There are mainly two types of tasks: a task representing the
clients, and tasks representing the servers processing incoming requests. Tasks
are hosted on resources that are denoted as processors in the circle, and multi-
processor hosts can be specified with a multiplicity figure. Smaller parallelograms
inside a task are called Entry and represent different service classes provided by a
task (e.g., different endpoints). The detailed operations inside each entry can be
described with a set of Activity specified with their execution order (rectangular
nodes for activities and circular “+” nodes representing probabilistic choices).
Each activity is parameterized with service demand, for example, specifying the
mean value of the exponential demand distribution. Activities can make requests
to different entries by sending synchronous or asynchronous calls. For instance,
in the top task, 10 concurrent clients are sending synchronous requests to E21
and E22 and the arcs are labelled with the value of the mean number of requests.

3 Methodology
Our methodology for modeling serverless applications combining static anal-

ysis and code profiling includes three main phases: a static analysis to learn the
topology for LQN structure modeling, a dynamic analysis with code profiling to
collect data for model parameterization, and LQN model generation.
Overview. The overview of the proposed methodology is shown in Figure 2. As-
sume that after the development of individual serverless functions or FaaS-based
workflows, we are able to access and instrument the source code and configura-
tion metadata either from developers or cloud providers. (Black-box functions
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whose performance models have been constructed with alternative methods can
in principle be included in the LQN model as well, with possible increase of the
overall uncertainty of the model. However, in this paper, we focus on modeling
functions whose source code is accessible.) First, to define the topological struc-
ture of the workflow, we apply static analysis to extract the intra-procedural and
inter-procedural control flow graphs from the source code of FaaS-based work-
flows, including individual functions and orchestration code composing them.
Besides, we try to infer the dependencies between the input parameters of each
individual serverless function and which function calls they affect; this can help
to reduce the number of nodes in the topological graph. We then inject profiling
instructions into the source code to enable code-level profiling during perfor-
mance testing (we will refer to the instrumented code as profiled code). Next,
the profiled code can be deployed on the production platform as required for
performance testing and data collection. After exercising the test inputs, the
service demand distribution is captured with the profiling data. The availabil-
ity of the static graph also allows inspecting if any static execution path has
not been covered, enabling the developer to decide whether 1) the static path
is effectively not executable (e.g., the FaaS application does not require all the
features of a library function, thus using only some of its possible behaviors),
2) the static path implements features not relevant to ensure the SLAs thus
it was deliberately not exercised during performance testing, or 3) the perfor-
mance test suite needs improvement to cover more missing relevant application
behaviors. Finally, we can generate LQN models using the topological graph
for components specification, and accurately characterize the model parameters
with code-profiling data.

In the remainder of this section, we will detail each of the three phases.

3.1 Static Analysis for Structure Extraction

We assume that there are two major components in a given FaaS-based
application: an orchestration function defining workflows to compose individual
serverless functions with suitable patterns (e.g., sequential or parallel execution),
and a set of individual serverless functions implementing different functionalities.
We first construct the topology of the LQN from static source code analysis.
The static analysis provides a fast way to capture the internal control flows
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Fig. 3: An exampled source code in Python from Azure Functions (a) and the
corresponding control flow graph (b).

by identifying (a superset of) all feasible paths of the programs. This can help
build a complete topological graph, whereas certain parts could be missed in
monitoring data if the inputs used to test the system do not cover all of its
features extensively.

Static Graph Generation. In this paper, we use both inter- and intra-procedural
static graphs to derive the topological structure of the LQN models. A call graph
(CG) is mainly responsible for extracting the calling relationships on the work-
flow, which is extracted from the orchestration function. While intra-procedural
information can be obtained by generating a control flow graph (CFG) for each
serverless function. Both CG and CFG are constructed by traversing nodes
in the abstract syntax tree (AST) on the profiled code, resulting in a collec-
tion of code blocks and control nodes representing conditional execution [23].
Combining both CG and CFG of the serverless workflow, we obtain an inter-
procedural static description of the system that we call the static graph (SG) as
SG = {CG,CFG}.

Given the control graph of an individual serverless function as CFG =
(N ,E), the control flow is formalized by conditions, loops, function calls, and
sequential code blocks. In CFG, N and E denote the nodes and edges, re-
spectively. In order to enable further analysis of the CFG, we then define each
node Ni as a tuple (i, ls, le), where ls and le are the starting and end lines of
the ith code block. A directed edge in E = {(Ni, Nj), . . . } describes the rela-
tionship between nodes Ni and Nj . The example source code in Figure 3a is
available at [1], and Figure 3b shows the control flow for the example server-
less function. The resulting CFG is represented with N = {N1, N2, . . . , N9},
E = {(1, 2), (2, 3), (3, 4), (4, 5), (4, 6), (4, 7), (3, 7), (7, 8), (7, 9)} and, for example,
N9 = (9, 13, 18).

Data Flow Analysis for Parameter Dependency Inference. The static
graph of serverless applications could be large due to redundant nodes repre-
senting the statements whose execution times are not influenced by a function’s
input parameters (e.g., constant time initialization). Thus, from a performance
perspective, these statements could be aggregated into single blocks to reduce
the size and fragmentation of the static graph. We apply a static data flow anal-
ysis to the profiled code to infer the potential parametric dependencies between
input parameters and function calls using taint analysis. This can help reduce
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Fig. 4: An example excerpt of code with taint analysis results highlighted (a),
and the control flow graph reduction process (b).

the number of nodes in a static graph by aggregating input independent nodes,
in turn lowering the computation complexity of solving the inferred LQN mod-
els. Taint analysis in this phase works by marking a statement in the source
code as tainted if its execution or assigned value is affected by function input
values. The parametric dependency inference can be formulated as detecting any
existing tainted statement in the nodes of the CFG. If there are input param-
eters used by the statement of any node, we then deduce that the execution
times of the detected node Ni are potentially dependent on such input param-
eters. Formally, potential parametric dependencies can be described as a set of
PDi = (source, sink, lineno), where source and sink are the identifiers of a
function input parameter and a function call whose arguments are affected by
the input parameter, while lineno is the line number identifying the call site of
the sink function to distinguish possible multiple calls.

If there is no potential parametric dependency detected in Nj , we can infer
that the demand for executing Nj is not impacted by function inputs, resulting
in a reduction of Nj by aggregating it with its predecessor. Figure 4a shows
an example source code with the taint analysis results highlighted. Let the left
graph in Figure 4b be the original CFG of the example code, with N4 = (4, 3, 3)
and N5 = (5, 4, 4). The right graph in Figure 4b shows the reduction of node N5

into node N4,5 due to no detected parametric dependencies in node N5.

Algorithm 1 formulates the control flow graph reduction process based on
taint analysis. The algorithm takes the intra-procedural control flow graph and
the detected parametric dependencies as inputs. The algorithm traverses Ni in
the original CFG and checks if any potential parametric dependencies occurred
at Ni. If no dependency exists, the current node Ni is added to the untainted
set rN . At Line 6 and 7, the algorithm first finds all predecessors and successors
of the untainted node and then revises the end line number of all predecessors
with le of Ni. Then at Line 10, the untainted node is removed from the original
graph. From Line 11 to Line 16, the algorithm iterates on the nodes and removes
the edges containing the affected nodes. By fully connecting the nodes in succ
and pred, the new edges are generated to form the untainted edge set Er. After
iterating on all the nodes in the original graph, the reduced graph CFGr =
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Algorithm 1 Control flow graph reduction with potential parametric depen-
dencies

Input: CFG ← Control flow graph of the source code CFG = (N ,E)
PD ← Set of potential parametric dependencies [PD1, PD2, . . . , PDn]

Output: CFGr ← Optimized CFG with reduction on nodes
1: Initialize rN = ∅, Er = ∅
2: for Ni in CFG do
3: for PDi in PD do
4: if lineno is not in the range of [ls, le] then
5: rN ← rN ∪Ni

6: succ← all successors of Ni, pred← all predecessors of Ni

7: update le of pred to include Ni

8: end if
9: end for
10: Nr ←N \ rN

11: for succi in succ do
12: for predi in pred do
13: Er ← E \ (predi, Ni), Er ← E ∪ (predi, succi)
14: end for
15: Er ← E \ (Ni, succi)
16: end for
17: end for
18: return CFGr ← (Nr,Er)

(N r,Er) is generated by combining nodes in which there are no function calls
or parametric dependencies.

It can be noticed that the parametric dependency inference is only capable
of detecting potential relationship between function calls and input parameters
from the code syntax. For example, consider y = 0*x; f(y); most taint analyses
would conclude that the invocation of f may depend on the input parameter x.
This may lead to a conservative over-approximation, with possibly only a subset
of the statically detected dependencies satisfied during runtime. In this case, the
static graph could have been further reduced, realizing that 0*x is identically 0.
Nonetheless, even when non-optimal, taint analysis may still help to reduce the
size of the static graph.

3.2 Code Profiling for Model Parameterization

Application-level monitoring data may be too coarse-grained to accurately
infer service demand parameters of LQN activities, representing the operations
inside individual serverless functions. We instead propose instrumenting the code
of a function to obtain fine-grained measurements that can bridge the informa-
tion gap between the granularity of the topology extracted via static analysis
and the data used for model parameter inference.
Code-level profiling. To avoid changing any functionality of the source code
and try to instrument the code as less as possible, we only wrap the MAIN
function block into a wrapper function and inject a decorator to record the
execution times with a standard line-level profiler [2] (while we refer mainly
to Python code in this work, similar profiler utilities exist for all mainstream
programming languages). Here, we take the assumption that the performance
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test inputs are representative of all relevant production behaviors. If executable
paths in the static graph are not covered by the current test inputs, while they
may affect the application’s SLAs, the developer has the opportunity to identify
the gap and produce additional performance tests.

We denote a sample from the collected profiling data as s = (lineno, dt, iter),
where dt is the execution duration of the statement at line lineno and iter is
the iteration counter to distinguish different iterations in a loop. We can then
map the profiling data into the static graph according to line numbers lineno in
s and (ls, le) of nodes in CFGr to extend the static graph with profiling data;
we will refer to this extended structure as profiled static graph.

Besides obtaining the execution times of nodes in the graph, we also need
to learn the probabilities of branches and the number of iterations for loops to
infer the remaining parameters of an LQN model. For the branch probabilities,
we define the executed path of each test input request eP . Each ePi ∈ eP
represents one of the feasible paths in the static graph that has been executed
according to the profiling data s. Therefore, the probability of a given selection
pathi on each conditional statement can be derived as the fraction of ePi taking
each branch over the number of ePi evaluating the corresponding condition. For
loop iterations, we represent the body of for or while loop as an entire activity
and infer the expected number of iterations from the profiling data, which is
consistent with the typical specification of LQNs. This can be further optimized
by considering the branch probabilities inside loops to indicate a probabilistic
loop, however, this is out of the scope of our current modeling method. In our
proposed method, the number of iterations of loops in each execution can be
directly extracted from the profiled data with iter.
LQN Activity Service Demand Distribution. Service demands are critical
parameters for the specification of activities, as they represent the cumulative
computation time the activity requires to run. To capture the demand of the
activities in LQN, we model the service demand distribution with acyclic phase-
type (APH) distributions and Erlang distributions by moment matching. Based
on the execution duration dt in the profiling data, we first try to fit an APH
distribution by matching the first three moments of dt. If there is no solution for
APH distribution with the current data, we then fit an Erlang distribution with
mean value and squared coefficient of variation (scv). In this way, the service
demand of each activity can be directly characterized by the profiling data.

3.3 LQN Model Generation

To construct an LQN model from the profiled static graph, we first define
a reference task to represent the incoming workload and an orchestration task
to abstract the workflow logic composing individual serverless functions. Then,
each individual serverless function can be modeled with a single task hosted on
a separate processor, since it can be deployed with different configurations of
resources and even to different platforms.

The entry node of the LQN is then specified according to the entry point
of each function. We further assume that the sequential or parallel (fork-join)
composition of the functions is specified in the orchestration function, e.g., using
Azure Functions code constructs. The degree of concurrency allowed to each
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function is specified in the configuration metadata. The scheduling policy of the
processor can be specified as either First-come-first-serve (FCFS), if the source
code is with single-thread implementation, or Processor-sharing (PS) if function
invocations can be interleaved on the same processor. Both scheduling policies
are supported in LQN modeling [15].
LQN Activity Graph Characterization. The static graphs and profiling
information collected so far allows for a systematic construction of the LQN
model. First, we consider that the orchestration function is allowed to specify the
workflow patterns with HTTP calls to invoke the individual serverless functions.
Each activity inside the orchestration entry can be defined according to the nodes
in the call graph and takes the role of sending synchronous and asynchronous
calls for parallel execution to the entries of individual functions in the lower
layers of the LQN. Whereas, the skeleton of the activity graph for an individual
function can be directly derived from the reduced CFG. The activity graph
representing the set of activities act is defined as AG = {act, sd,prec}, where
sd presents the service demand and the precedence relation among activities is
denoted as prec.

Now we discuss the procedure of activity graph specification for the serverless
function f following the approach in [14]. For each activity representing N

′

i , all

the successors and predecessors of N
′

i are computed. There are mainly 4 types of
activity precedence included in our method: (1) If the current node is included

in its predecessors, it indicates that loops are occurring at N
′

i which can be
extracted with the number of iterations iteri derived from profiled data. (2) If
the current node only has one successor and one or fewer predecessors, it means
that N

′

i is sequentially connected to its successor. (3) When there is more than

one successor of N
′

i , there are branches with IF or SWITCH statements for
jumping to different nodes, whose branching probabilities have previously been
computed from profiling data. (4) If there is more than one predecessor, different

conditional blocks can be merged at N
′

i . From the orchestration function, we
also capture parallelism and synchronization among the execution of different
serverless functions. Combining all the listed cases, our method can describe
the operator precedence in the activity graph including sequential interactions,
conditioning and merging on branch nodes, as well as fork-join synchronization.

4 Evaluation
In this section, we first introduce the experimental setup and metrics to

evaluate the accuracy of performance models constructed with our method. The
comparison of LQN model predictions against execution monitoring traces for
serverless workflows with different composition patterns is presented afterwards.
4.1 Experimental setup

To evaluate the proposed method for automatically building LQN models
based on static analysis and code profiling, we first implement 4 serverless work-
flows including sequential, branching, parallel and complex execution scenarios.
The source code of the serverless workflow implementation is available at [1].

We create 13 serverless functions and 4 orchestration functions to define a
collection of common workflow patterns on Azure Functions Service. The in-
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Table 1: FaaS-based workflow patterns

wf1 wf2 wf3 wf4

Number of functions 8 9 8 14

c2 of execution times 0.26 5.71 0.84 7.44

dividual serverless functions are adapted from public examples that use Ten-
sorFlow with Azure functions [3] and models from Onnx Model Zoo [4]. The
functionality of different workflows includes preprocessing of input images and
classification based on machine learning algorithms or pre-trained models. Some
metrics for the composition workflows implemented by the 4 orchestration func-
tions are shown in Table 1, where c2 is the squared coefficient of variation of the
execution times.

To evaluate the accuracy of our modeling method, we conduct several exper-
iments with different workloads and compare the performance predictions from
the LQN models against the application-level monitoring data of the serverless
workflows. The experimental environment is as follows. All the individual server-
less functions are developed with Python 3.7 and deployed with Azure Functions
3.0. We take the response times of requests from the real traces as ground truth
to evaluate our model-based predictions. To collect the real traces, we use Azure
Application Insights as the monitoring tool and expose the code profiling data
on the same service. As workload-independent execution times can be profiled in
isolation, we can perform offline profiling on the production platform as required
to collect profiling data, and then deploy the non-instrumented functions to the
target cloud service (without the profiling instructions) to collect application-
level runtime monitoring data.

The static analysis is built on top of the ast module in Python 3.7. For the
taint analysis on the static data flow, we use the open-source tool Pyre shipped
with Pysa [6] to infer the potential parametric dependencies. To obtain the ana-
lytical results, we use LQNS via LINE to solve the generated LQN models [11].
For performance testing, we generate closed workloads with different intensities
using Locust [5].

We compare the model prediction accuracy of mean response times to the
collected traces, using mean relative error (MRE) as our comparison metric,
where MRE = |m−m′|/m is computed with the mean response times m of the
monitored execution traces and m′ for LQN predicted response times.

4.2 Experimental Result

We first evaluate the static graph reduction based on inferring static para-
metric dependencies. Next, to evaluate the accuracy of parameterization for LQN
models, we conduct extensive experiments with different settings of the number
of processors and the dynamic auto-scaling to simulate two resource provision
scenarios. Here, we regard these two experimental settings as limited resources
and sufficient resources in the following discussion.
LQN Model Node Reduction. In Section 3.2, we introduced Algorithm 1
to reduce the size of the static graph by aggregating code blocks independent
of input parameters, with the ultimate goal of further reducing the size and
complexity of the generated LQN models. We here compare the accuracy and
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Table 2: The comparison results of based on LQN node reduction

Number of Activities Execution times (s) MRE

Original Reduced Original Reduced Original Reduced

wf1 91 67 2.793 2.092 0.044 0.030

wf2 96 69 2.804 2.133 0.029 0.038

wf3 27 21 1.545 1.542 0.222 0.236

wf4 122 89 3.682 3.257 0.103 0.117

efficiency of the original LQN models to the reduced LQN models. From Table 2,
we can observe that after node reduction, for example, the number of activities of
wf2 is reduced to 69, which indicates that nearly 30% of nodes have been merged
according to the static parametric dependencies. Besides, it can be noticed from
the table that the execution times of solving model are decreased by up to 25%
for wf2, while the MRE increases only to a small degree for all the subjects,
which is likely an acceptable trade-off between prediction accuracy and model
complexity in most situations. We can conclude that the reduction of nodes in
static graphs can directly help to reduce the number of activities in the LQN
model, thus saving analysis costs. The savings come with a marginal increase in
the MRE for three out of four subjects, while the MRE marginally decreased for
wf1. Overall, the impact of reduction on the MRE appears marginal.

Sufficient Resource. In the following experiments with sufficient resources, we
assume that dynamic auto-scaling is enabled for each FaaS function and there
is no need to operate on the configuration of the resources. In LQN models,
we set the multiplicities of each processor to 100 to simulate sufficient resource
provision not to limit the scaling out of the individual functions.

We evaluate the above 4 different workflow patterns and take wf1 as an
example under different workloads. The comparison of LQN model predictions
against the real traces is shown in Figure 5, and the details of model accuracy
evaluation are in Table 3. It can be seen from Figure 5a that the mean response
times among different workflow patterns vary in a range of 0 to 15 seconds, while
all prediction results are close to the measurements. Figure 5b, which zooms on
wf1, shows that there is no obvious increase in response times as the number of
clients grows. This is because under sufficient provision, all required resources
can be allocated and there are no significant queueing times for each request.
Therefore, the LQN modeling results capture the correct trend of response times
changing with workloads. Besides, it can be observed from Table 3 that the
prediction of the LQN model yields good accuracy with an average MRE over
the four workflows of 5.5% (min=2.9% for wf2, max=10.3% for wf4), indicating
a fairly accurate characterization of the performance of the FaaS workflows.

Limited Resource. For the limited resources experiments, we tune the configu-
ration of each serverless function to variate the number of cores for the processor.
Practically, we first identify the most resource-demanding serverless function as
the bottleneck function and then study the accuracy of our model for different
values of the maximum number of instances on Azure and, coherently, of the
multiplicity parameter of the corresponding LQN activity.
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Fig. 5: Mean response times of different workflow patterns (a) and of wf1 under
different workloads (b), comparing model prediction and real trace measure-
ments.

Table 3: MRE of compared results in Figure 5

workflow pattern workload

wf1 wf2 wf3 wf4 1 5 10

Model 9.081 0.927 10.144 1.923 9.081 9.081 9.081

Measurement 9.501 0.901 9.737 1.744 9.501 9.613 8.390

MRE 0.044 0.029 0.042 0.103 0.044 0.055 0.082

However, when a single processor is allowed, Azure Function Consumption
plan limits the allocated memory to 1.5Gb, which in the case of wf3 and wf4 is
not sufficient to serve 10 users without scaling strategies for the most resource-
demanding serverless function. Therefore, we selected the second most resource-
demanding serverless function as the bottleneck function for wf3 and wf4. The
comparison of results on LQN model prediction and monitoring traces measure-
ments is shown in Tables 4 and 5.

First, we investigate the model performance with increasing concurrent users
between N = 1 to 10 with only one processor (P = 1) available for the bot-
tleneck function. It can be seen from Table 4 that, with increased workload
intensity, the mean response time grows with different trends. For example, in
wf1, the response time with 10 users is nearly 5 times higher than with 1 user
due to the contention on the bottleneck function that forces the users to wait.
Nevertheless, regardless of the variation trends in the response time, the model
predicts accurately the performance measurements from monitoring traces in
all four workflows, with average MRE across all the experiments of about 6.2%
(min=0.8% for wf1 with N = 10, max=12.2% for wf4 with N = 10).

Next, we evaluate model prediction accuracy using an intense workload (N=10)
and varying the number of processors available for the bottleneck function. Ta-
ble 5 shows the comparative data for the number of processors P between 1 and
10. As expected, increasing the number of processors reduces the response time
for all the workflows, albeit with different trends. The average MRE across all



14 Runan Wang, Giuliano Casale, and Antonio Filieri

Table 4: Comparison results on different number of processors on 4 workflow
patterns with limited resource P = 1

wf1 wf2

N = 1 N = 5 N = 10 N = 1 N = 5 N = 10

Model 9.081 22.718 49.016 0.927 1.454 3.085

Measurement 9.501 24.397 48.606 0.901 1.394 2.952

MRE 0.044 0.069 0.008 0.029 0.043 0.045

wf3 wf4

N = 1 N = 5 N = 10 N = 1 N = 5 N = 10

Model 10.144 10.664 12.545 1.923 2.229 3.215

Measurement 9.737 12.125 13.626 1.744 2.3 3.655

MRE 0.042 0.120 0.079 0.103 0.031 0.122

Table 5: Comparison results on different workloads on 4 workflow patterns with
limited resource N = 10

wf1 wf2

P = 1 P = 5 P = 10 P = 1 P = 5 P = 10

Model 49.016 10.325 9.083 3.085 0.928 0.927

Measurement 48.606 13.27 8.018 2.952 1.149 0.879

MRE 0.008 0.222 0.133 0.045 0.192 0.054

wf3 wf4

P = 1 P = 5 P = 10 P = 1 P = 5 P = 10

Model 12.545 10.144 10.144 3.215 1.923 1.923

Measurement 13.626 8.600 10.489 3.655 2.031 1.895

MRE 0.089 0.180 0.033 0.120 0.053 0.015

the experiments is in this case about 9.5% (min=0.8% for wf1 with P = 1,
max=22.2% for wf1 with P = 5). While average MRE remained under 10%,
we observed a performance deterioration for P = 5. By observing the execution
traces, we conjecture this deterioration may be caused of some implicit optimiza-
tion or automation happening on the serverless platform around P = 5 which is
not accurately captured by our models and may require additional investigation.

Summary. The evaluation of our LQN modeling strategy for serverless func-
tions based on static analysis and code profiling may be summarized with the
following two observations. First, node reduction on the static graph leads to
smaller LQN models, saving computation time for both LQN model generation
and model-based performance prediction, with negligible impact on prediction
accuracy. Second, model-based performance prediction achieved a close fit to
the measurements from monitoring traces (average MRE=7.3%), under differ-
ent workload intensity and in both sufficient and limited resources. Finally, we
remark that the availability of the static graph also allows assessing the coverage
of the performance test inputs, highlighting possible execution paths relevant to
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the satisfaction of the application’s SLAs that are not exercised (enough), thus
driving the refinement of the performance test suite.

5 Related Work

The question of how to predict the performance of serverless functions is
closely followed by researchers. However, fine-grained analytical performance
modeling for serverless functions still lacks investigations to our knowledge. Eis-
mann et al. [12] propose to use mixture density networks to predict the response
time distribution of a single serverless function and then estimate the cost of
serverless workflow execution by Monte-Carlo simulation. In [7], the authors
develop a framework called COSE for serverless function configuration with a
trace-based performance model. Based on the performance model, they apply
Bayesian Optimization into obtaining the optimal serverless function configura-
tion. These works can be identified as data-driven performance predictions for
serverless functions, which cannot give an explicit, interpretable abstraction of
a serverless application.

On the other hand, model-driven performance prediction can help developers
and providers to better understand different performance prediction and reason
about performance issues or design alternatives. Boza et al. [10] propose to use
M(t)/M/∞ queues to model serverless functions, enabling the calculation of per-
formance and cost. Mahmoudi et al. [20, 21] propose an analytical performance
model by using a continuous-time semi-Markov process to accurately predict
the performance metrics. However, this work mainly focuses on modeling as-
pects of the computing platform to support tuning its configuration, and does
not directly relate to the internals of serverless functions. Lin et al. [19] use prob-
abilistic directed acyclic graph abstractions to predict the end-to-end response
times of serverless applications. The smallest representable unit in this work is a
whole serverless function, which may limit the performance prediction accuracy
due to the coarse modeling granularity.

Finally, the generation of LQN models for software performance prediction
have also been investigated starting from higher-level, architectural specifica-
tions, e.g., from UML [24] or Palladio Component Models (PCM) [8]. Recently,
TOSCA specifications have been extended to specify several concerns of server-
less applications [28] and can be used to generate LQN performance models.
However, most of these approaches require expert knowledge to define accurate
architectural models in the first place. This is typically expensive and error-prone
due to the need to keep the models consistent with the actual implementation,
which also requires manual instrumentation and adequate performance test suite
to measure the implementation’s performance.

6 Conclusion and Future Work

We presented a new method to build LQN performance models for server-
less applications using information from static analysis to enhance model-based
prediction accuracy. We exploit the relatively smaller size of serverless function
implementations, together with advances in static analysis methods for mod-
ern programming languages, to extract intra- and inter-procedural control and
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data dependencies among functions and their invocation parameters at different
call sites. The topological structures identified by these dependencies then drives
both code-level performance profiling and the automatic generation of a succinct
LQN model to reason about the performance of the application. Experimental
results indicate that our method can accurately capture the characterization of
FaaS workflows and yield accurate prediction results under different workloads
and resource provisions.

Among the possible future research directions, we aim to explore the inte-
gration of performance modeling of FaaS-based applications with performance
issues diagnosis. Intra- and inter-function LQN models can help to relate perfor-
mance bottlenecks to code artifacts, potentially helping to locate the root causes
of SAL violations.
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