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Abstract—SMT solvers are often used in the back end of
different software engineering tools—e.g., program verifiers, test
generators, or program synthesizers. There are a plethora of
algorithmic techniques for solving SMT queries. Among the
available SMT solvers, each employs its own combination of
algorithmic techniques that are optimized for different fragments
of logics and problem types. The most efficient solver can change
with small changes in the SMT query, which makes it nontrivial
to decide which solver to use. Consequently, designers of software
engineering tools often select a single solver, based on familiarity
or convenience, and tailor their tool towards it. Choosing an SMT
solver at design time misses the opportunity to optimize query
solve times and, for tools where SMT solving is a bottleneck, the
performance loss can be significant.

In this work, we present Sibyl, an automated SMT selector
based on graph neural networks (GNNs). Sibyl creates a graph
representation of a given SMT query and uses GNNs to predict
how each solver in a suite of SMT solvers would perform on
said query. Sibyl learns to predict based on features of SMT
queries that are specific to the population on which it is trained
– avoiding the need for manual feature engineering. Once trained,
Sibyl makes fast and accurate predictions which can substantially
reduce the time needed to solve a set of SMT queries.

We evaluate Sibyl in four scenarios in which SMT solvers
are used: in competition, in a symbolic execution engine, in a
bounded model checker, and in a program synthesis tool. We
find that Sibyl improves upon the state of the art in nearly
every case and provide evidence that it generalizes better than
existing techniques. Further, we evaluate Sibyl’s overhead and
demonstrate that it has the potential to speedup a variety of
different software engineering tools.

Index Terms—graph neural networks, satisfiable modulo the-
ories, algorithm selection

I. INTRODUCTION

Satisfiability modulo theories (SMT) is the problem of
determining if there exists an assignment to the variables in a
logical formula involving predicates from different mathemat-
ical theories that makes it true. Software engineering tools,
such as model checkers [1]–[5] or symbolic executors [6]–
[9], can formulate problems as SMT queries and then rely on
SMT solvers to determine if there is a solution to the query.
In practice, the SMT solvers’ ability to solve queries tend to
be a performance bottleneck for these tools [9]–[12].

There are many SMT logics, dealing with combinations
of arrays, bit-vectors, integers, reals, strings, etc. This has
resulted in a diversity of solvers, some specializing in certain

logics or fragments of a logic, and others attempting to be
more general. The International Satisfiability Modulo Theories
Competition (SMT-COMP) is an annual event which evaluates
SMT solvers on hundreds of thousands of queries across the
various logics [13]. Solvers are scored based on how many
queries they could correctly solve, with ties being decided
by time. In SMT-COMP’21, 9 different solvers came in first
place in at least one category. For each category, there are
many queries where the winner isn’t the fastest solver. In the
best case, the winner is fastest on 96.7% of the queries. In
the worst case, the winner is only the fastest solver on 35.4%
of the queries. All this is to say that, even when looking at
individual logics, there is no optimal solver, where optimal
means correct followed by most efficient in use of resources.

In an effort to utilize the strengths of various SMT solvers,
some software engineering tools support multiple solvers [1],
[10], [14]. These tools typically only allow the user to select
which solver to use across the entire run of the tool on a given
input. On a single input, tools may generate millions of queries
and its been shown that different solvers may be optimal
on different subsets of queries generated on said input [10].
Some tools allow for running a portfolio of SMT solvers in
parallel and stop once the first solver has solved the query [10].
On simple queries, this is reasonable, but as queries become
larger and more complex, this can result in inefficient use of
resources. Choosing the optimal solver from a portfolio for a
given problem requires both an understanding of how a given
tool generates SMT queries and of the strengths of each solver
in a portfolio. This is challenging both for SMT experts, who
may be unfamiliar with tool-generated queries, and for SE tool
experts, who may be unfamiliar with the intrinsic capabilities
of multiple SMT solvers.

Algorithm selection is an approach that attempts to exploit
the benefits of a diverse set of algorithms to best solve a prob-
lem. An algorithm selector for SMT queries would attempt to
select the solver which most efficiently uses resources, such as
time or memory, to solve a given query. Algorithm selection
is a heuristic approach and can be used in several ways. The
most basic is choosing the selected solver and running it. If
the algorithm selector makes optimal choices and has little
overhead, this is ideal. In general, optimal algorithm selection
is challenging if the population of problems and the portfolio



of solvers is highly diverse. Another solution would be to
choose the top-k predicted solvers selected and run them in
parallel [15]–[17]. Resource usage would rise with k, but if
the best solver was one of those selected, the problem would
still be solved in the optimal response time.

Even if an algorithm selector is efficient, there will still
be some overhead required to make a selection. SMT solvers
can solve some queries in microseconds, meaning selection
will often slow down solving. One way to counteract selection
latency is to run a solver that is fast on average in parallel with
the selected solver. If the query is simple, the fast-on-average
solver will solve it quickly and the time overhead of selection
will not affect response time. If the query is complex, however,
the selector can choose the best solver for it. The modest
degree of parallelism in this approach will use fewer resources
than the top-k approach while offering its benefits. In this
paper, we evaluate several solvers using both selection-only
(pure algorithm selection) and selection-in-parallel (selection
in parallel with a single solver).

The current state-of-the-art, MachSMT [18] and Medley-
Solver [19], rely on feature engineering, a process which
requires developers to extract features they determine, through
domain knowledge, are important to various solvers’ success.
They then use these features to train a model which can
perform selection on new queries when they are presented to it.
These techniques were tuned by SMT experts to perform well
across a range of SMT-Comp benchmarks. As we demonstrate,
however, when the fragments of SMT logics that arise in
software engineering domains are considered, those features
are no longer well-suited to differentiating tool performance.

In this work, we present Sibyl, an algorithm selector for
SMT solvers based on graph attention networks (GATs), a
variant of graph neural networks (GNNs). Unlike MachSMT
and MedleySolver, Sibyl learns how to generate a feature
vector, a process known as representation learning. Thus, it can
be tailored to a specific domain during the training process.
Given an SMT query, Sibyl generates a graph representation
of the query and produces scores for each SMT solver in a
portfolio of solvers.

We evaluate Sibyl in comparison with the state-of-the-art,
and other selection approaches, on three different software
engineering problem domains: symbolic execution, bounded
model checking, and program synthesis. We find that, while
MachSMT outperforms Sibyl on the SMTComp benchmarks,
which it was designed for, Sibyl outperforms the state-of-the-
art by 37.6% to 159.7% across each studied problem domain.

This paper makes the following contributions: (1) it intro-
duces an algorithm selection technique for SMT solvers based
on state-of-the-art graph neural networks; (2) it demonstrates
that Sibyl improves on the state-of-the-art by evaluating SMT
algorithms selectors on a large, diverse set of benchmarks,
selected from four domains; (3) it evaluates the practicality
of integrating Sibyl into an SE tool; and (4) it demonstrates,
through an ablation study, that each components of Sibyl’s
design contributes to its performance.

II. BACKGROUND AND RELATED WORK

In the following sections, we provide background informa-
tion on the use of SMT in software engineering, GNNs, and
algorithm selection and summarize the main related work.

A. SMT in Software Engineering

In this paper, we examine SMT solvers in three software
engineering scenarios: in a bounded model checker, in a
symbolic execution engine, and in a software synthesis tool.
In each of these scenarios, the tool generates SMT queries to
solve the given problem. A query is specified by a logic and
a constraint. The logic defines the theory underpinning the
semantic interpretation of the boolean expression representing
the constraint. For example, the constraint x > 0∧2∗x <= 1
is satisfiable, e.g., x = 0.5, if interpreted in the logic of linear
real arithmetics (LRA) while it is unsatisfiable in the logic or
linear integer arithmetics (LIA). The SMTLib standard [20]
defines a broad set of logics supported by most solvers.
Bounded model checking builds a finite state model of a
software execution up to a maximum number of steps, where
the transition relation between states is derived from the
semantics of the program’s instructions [21]. Violations of a
desired property – e.g., an assertion condition evaluating to
false – are encoded as transitions towards designated error
states. The model checker then verifies whether the transition
relation allows transitively reaching any error state from the
initial one. SMT-based model checkers encode the transition
relation as an SMT problem and query a solver to determine
the reachability of error states [11], [12], [22]. Building on the
semantics of established SMT theories, the transition relation
can be encoded compactly, and the solver finds an assignment
to the problem’s variables that allows reproducing a failing
execution (counterexample).
Symbolic execution engines can be used to test programs by
executing them not with symbolic inputs which represent all
possible inputs of the given type [23]. When the symbolic
executor reaches a conditional branch, the execution forks
to cover each of the execution branches, and each of the
forked executions collect the condition or its negation in their
path condition – a logical constraint characterizing all the
program inputs that would follow the same execution path.
Path conditions are checked for satisfiability after each fork
to decide if the path is still feasible, and solved to generate a
representative test case at the end of a terminating path.
Program synthesis tools attempt to generate a program that
conforms to a given specification. For example, a specification
could be “Given a list of integers, return the same integers in
ascending order”. The synthesizer would be expected to output
a function which sorts a list of integers. Given a specification,
a synthesizer can generate the constraints on the function that
must hold for the specification to be met, e.g., A[i] ≤ A[i+1].
These constraints are then simplified into first-order constraints
which can be solved by SMT solvers to verify conformance
to the specification or guide the synthesis process [24].



B. Graph Neural Networks

Traditionally, machine learning techniques, such as convolu-
tional neural networks (CNNs) or SVMs, rely on the fact that
the data they operate on has a consistent size and ordering [25],
e.g., images have a fixed resolution and orientation. In general,
graphs have neither of these attributes. They can have any
number of nodes and edges and have no canonical order. One
could collate all nodes in a graph into a feature vector, but this
would lose the information in the edges and overall structure
of the graph. Graph neural networks (GNNs) were introduced
to capture these characteristics [25].

GNNs operate by propagating information among the nodes
of the graph through the edges that connect them via message
passing layers. Each node in the graph has a state vector.
Initially, this vector represents some information about the
node. Over a series of propagation steps, the state of each
node is updated using its state vector and the state vectors
of its neighboring nodes. After each step, node values are
transitively influenced by neighbors further in the graph. This
diffusion process allows each node to update its state to reflect
the data from other nodes and the structure of the graph.

Once the propagation is completed, the new representation
of the graph can be used to perform various tasks. Individual
nodes in the graph can be used to perform node-based predic-
tion tasks, such as recommending a connection to a person in
a social network [26]. The entire graph can be used to perform
graph-based tasks, such as predicting properties of a chemical
compound [27]. In order to do so, a pooling layer, a layer
which collates the graph into a fixed size, must be used so a
traditional prediction technique, like a fully connected neural
network, can operate on it.
Graph Attention Networks (GATs) are a type of message
passing layer which use attention mechanisms to calculate
the state value of nodes in a graph [28]. For each node n,
the attention mechanism computes a score for each of n’s
neighbors, which roughly represents the importance assigned
to the information coming from a neighbor. This attention
score is then used to weight each neighboring node’s encoding
when they are used to form a new encoding for n. This
allows the network to learn which components in an encoding
are important when performing the task as the attention
mechanism is a learned component, typically a one layer feed
forward neural network. For example, if an SMT solver excels
at handling queries with quantifiers, the network may highly
weight the encoding of the quantifier token. If strictly less than
operations do not affect solver performance much, it may learn
to associate this token’s encoding with a small weight.

Because many aspects of software can be abstracted in
graph form, GNNs have been used to accomplish various tasks
in software engineering contexts. GNNs have also been used to
perform program classification [29]–[31], compiler optimiza-
tion scheduling [32], and predicting variable names [33].

C. Algorithm Selection

As SMT-COMP has shown [34], there is no optimal SMT
solver in general, even when limited to a single logic. This

has motivated algorithm selection for SMT solvers. Algorithm
selectors seek to improve performance on a problem class by
selecting the optimal algorithm for a given problem. In this
section, we describe three approaches – rule based, feature
engineering, and representation learning – along with the
current state-of-the-art algorithm selectors for SMT solvers.
Rule based algorithm selection is a fairly simple approach
to selection. An algorithm selector extracts features from the
given problem, typically using some lightweight analyses, and
composes the portfolio of algorithms to run based on a given
set of conditionals [35]. For example, a rule could be “if a
query has strings, run solver X”. This technique requires the
designer of the rules to know the strengths and weakness of
each tool in the portfolio in order to be effective. As a result,
adding tools to the portfolio is nontrivial.
Feature engineering is a more flexible approach to selection.
Once again, the selector extracts features from the problem
to create a feature vector. Unlike the previous technique,
the developer does not decide the selector’s output for a
combination of features, instead a machine learning model,
such as a linear regression model or a support vector machine
(SVM) [18], [19], [36], is trained to predict the best output.
In order to do so, the model must be trained using a labeled
dataset, where the label is the metric the developer wants the
selector to optimize, such as time or memory used. The design
of the feature set for models like SVMs can be challenging
and there is a risk that too few features leads to high bias in
the learned model – and poor generalization – and too many
features leads to high variance – and poor accuracy [37].
Representation learning is the most adaptive of these al-
gorithm selection techniques. The developer is relieved of
deciding which features to extract. Instead, the selector makes
use of an encoder which transforms a representation of the
problem, an SMT query in our case, into a feature vector a
traditional machine learning model can operate on [38]. The
encoder learns how to form a feature vector, allowing it to
adapt to the training population. In this paper, we represent
SMT queries as graphs and use a GNN to learn an encoding for
queries, similar to the algorithm selector introduced by Hůla
et al. [39]. A downside of this technique is that it can be hard
to decipher why predictions are made. There are techniques
which can be used to extract interpretability information from
a model. Ying et. al introduce an approach which masks
portions of the graph to see how they affect a prediction [40].
MachSMT [18] and MedleySolver [19] are feature engineer-
ing approaches to algorithm selection for SMT queries that
use a random forest [41] with AdaBoosting [42] and multi-
armed bandit models [43], respectively. They are the current
state-of-the-art in SMT algorithm selection and will act as
baselines in our experiments. The developers of each technique
have identified a set of syntactic features, overlapping by over
80%, which can be extracted easily. Each were evaluated on
SMT-COMP benchmarks and shown to perform well on them.
Because these techniques are based on feature engineering,
they rely on their chosen features being able to differentiate
solvers performance. We show in our evaluation that many



Fig. 1: Sibyl prediction pipeline. Queries are converted to
graphs, which a GNN encodes as a feature vector. A simple
neural network predicts solver performance using this vector.

of the features do not appear in SE problem domains. We
believe this explains the poor accuracy we observe for these
techniques – the large feature counts lead to unnecessarily
high variance for these domains. Engineering features for
each domain would resolve this, but that is precisely what
representation learning does.

Hůla et al. [39] introduce a more adaptive approach which
uses graphs to represent queries and a basic GNN to generate
vector representations of the graph. Their approach uses a
relatively simple message passing layer called graph convo-
lutional networks (GCN). For each node, the representation of
its neighboring nodes are scaled by the neighborhood size and
then summed together. The resulting value is then multipled
by a learned matrix. Besides scaling the value of each node, it
does not adapt to the neighborhood. Once the GNN is finished,
their approach forms a vector representation by taking the
element-wise maximum of all nodes in the graph which is
fed to a simple feed-forward network to make a prediction.

III. APPROACH

MachSMT and MedleySolver use human engineered feature
vectors to represent SMT queries. The majority of these
features capture “counts” of syntactic entities in a query,
e.g., the frequency of different tokens, the ratio of forall or
exists quantifiers. While efficient to calculate, these features
do not capture query semantics. While they provide some
value for prediction, they are likely to miss some information
since syntactic counts cannot predict the performance of a
single SMT solver, much less multiple solvers, as evidenced
by these queries: x · y = 7919 ∧ x > 1 ∧ y > 1 and
x · 7919 = y ∧ x > 1 ∧ y > 1, which have identical syntactic
count profiles but take 0.87 and 0.08 seconds, respectively, to
solve with Z3 [44].

Beyond this, many of the human engineered features may
remain unused depending on the domain of the query. For
example, none of the software engineering tools we studied
produce queries with floats in them, whereas over a quarter of
the engineered features concern floats. Such approaches cannot
automatically adapt their representation to a given domain.

In this paper, we introduce Sibyl, a representation learning
approach for SMT selection which uses state-of-the-art graph

neural networks. Like [39], Sibyl represents queries as a graph
and uses a GNN to form a vector representation. However,
Sibyl uses a more sophisticated GNN which makes use of
several state-of-the-art GNN layers. Instead of a GCN, Sibyl
uses GAT layers which learn how to calculate the value of each
node in the graph based on its specific neighborhood. Take the
following two query fragments as an example: X ∨True and
X ∨ Y . The first fragment is true regardless of the remainder
of the query. The second fragment can be can be true or
false depending on the values of the variables. The attention
mechanism can learn that the True constant is more important
in the first fragment and the free variable can essentially be
ignored during propagation. For the second fragment, it can
learn both free variables carry importance.

Instead of taking the elementwise maximum of each node
in the graph to form a final representation, Sibyl uses an
attention-based pooling operator. This operator learns how
to scale the different values in a node’s representation and
sums the values together, effectively boosting information the
network learns is important, and minimizing information it
deems superfluous.

In the remainder of this section, we describe the Sibyl
technique which consists of three phases, depicted in Figure 1:
graph generation, representation generation via a GNN, and
prediction via a simple three layer neural network.

A. Graph Generator

Definition III.1. A directed Graph G = (V,H, E) where:
• V = {v0, v1, . . . , vn} ; vi is a node
• H = {h0, h1, . . . , hn} ; hi is an encoding of vi’s value
• E = {E0, E1, . . . , Em} ; Ei corresponds to the ith edge

type in the graph
• Ei = {e0, e1, . . . , eui

} ; ei ∈ V × V is a directed edge

To form a graph GSibyl = (VSibyl,HSibyl, ESibyl), Sibyl’s
graph generator combines two graphs: the query’s abstract
syntax tree (AST) and its use-def graph (UD).

The nodes of the AST represent the various operations,
operands, constants, and variables in a query and their re-
lationships. Purely structural tokens, such as parentheses or
whitespace, are implicit in the graph structure and are ignored.
By discarding structural tokens, the GNN is able to propagate
information about semantic relationships between fragments
of a query more directly with message passing layer since
there are fewer intervening tokens.

Rather than encoding variable names in the graph, which
would require the learner to relate string attributes of graph
nodes, the AST nodes are related by UD edges that make
explicit the relationship between the uses of the free variables
in a query. The UD has a node for each free variable. We
call these nodes “context” nodes as they maintain information
about the various contexts in which free variables are used.
HSibyl consists of the one-hot encoding of each node in

VSibyl. Let T be the set of possible tokens in an SMT query.
Each token ti ∈ T is represented by an index i ∈ [1, |T |].
The one hot encoding of ti, h(ti), is a vector of length |T |



Fig. 2: Sibyl’s GNN consists of three types of layers: GAT
layers, a jumping knowledge layer, and an attention-based
pooling layer. In the experiments, we explore how varying
the number of GAT layers affects model performance.

of 0s and a single 1 where h(ti) = h(tj) ⇔ ti = tj . One-hot
encodings are frequently used in graph-based learning contexts
to represent the value of nodes as they are simple to calculate
and tend to perform well in practice [36], [45]–[47].

ESiybl = {ETB , EBT , EUD}. ETB is set of edges in the
AST traversing the tree from top to bottom. EBT is set of
edges in the AST traversing the tree from bottom to top.
EUD is a set of edges connecting free variable uses to their
corresponding context node. The edges in Sibyl’s graphs are
directed, following the convention for most GNNs. Undirected
graphs can be represented as two directed graphs and the GNN
can learn separate weights for each graph.

The edges of the AST allow the GNN to capture the
interaction between the various nodes in the graph. ETB

allows information in the graph to flow down the tree. This
results in the nodes at the bottom of the tree, the operands,
having encodings that were formed using both their initial
encoding and those of the operators which make use of them.
EBT allows the opposite to happen, resulting in the operators
being informed by their operands, which may be the results
of other operators or terminal nodes. The interplay between
these two edge sets also allows information from one operand
to flow up to its operator and back down to another operand,
effectively informing each term in an equation about each
other.

The UD graph has directed edges from use to definition,
or context node. This way, the uses of free variables maintain
only information of how they are used. The GNN can then
propagate the appropriate information from the uses to the
context node, allowing context nodes to maintain the informa-
tion the GNN deems important about every one of its uses.

B. Graph Neural Network

In general, the purpose of a GNN is to transform graph data
into a representation that both captures the latent information
in the structure of the graph and is amenable to traditional
machine learning techniques, in our case a feed forward neural
network. The traditional technique can then perform a task,
like prediction, it is normally used for.

Visualized in Figure 2, Sibyl uses a GNN consisting of a
variable number of GAT layers [28], a jumping knowledge
layer (JK) [48], and an attention-based pooling layer [49].

GAT layers are the message passing layer in Sibyl’s GNN
which allow information to propagate across edges. During
this process, the GAT’s attention layer weighs the informa-
tion that is being propagated. It learns to weigh information
based on the current state of the node and the information
being “received”, in effect weighting the edge between two
nodes. GATs are state-of-the-art graph neural networks that
are widely used [50]–[52] and have been shown to outperform
GCNs [28].

After the GAT layers, the JK layer calculates a final
representation for each node in the graph. JK layers allow
the network to use the intermediate node representations
produced by the message passing layers when calculating a
final representation. The JK layer takes in the initial node
representations and the representations generated by each GAT
layer. Sibyl concatenates each node’s intermediate values to
form a final representation. JK layers are frequently used
in GNN architectures [53]–[55] as it has been shown that
representations formed in the earlier layers of message passing
may help with a model ability to generalize [56]. We perform
an ablation study which showed a 12% increase in Sibyl’s
accuracy over networks which did not include a JK layer.

Finally, the nodes must be collated into a feature vector
of a fixed size so traditional machine learning techniques
can consume it. Sibyl uses a attention-based pooling layer.
For each node in the graph, the pool calculates an attention
score to weight the node’s encoding when summing all nodes
together. Attention-based pooling techniques have been shown
to be effective in both CNNs and GNNs [49], [57], [58]. Like
GATs, they can learn to weigh relevant information highly,
and give noisy information low weights. By using both GAT
layers and an attention-based pool, Sibyl’s GNN can weigh
the importance of individual nodes and edges when forming
a feature vector. This feature vector is fed to a three layer
feed-forward neural network which calculates a score for each
solver in the portfolio of solvers.

C. Implementation

We created a prototype implementation of the Sibyl tech-
nique and made it publicly available at https://anonymous.
4open.science/r/sibyl-884E. To generate program graphs, Sibyl
uses the AST generated by pySMT [59], defining a visitor to
walk the AST to collect its nodes and edges, along with the
data required to form the UD graph.

Sibyl uses the machine learning libraries PyTorch [60] and
PyTorch Geometric [61] to implement its various machine
learning components. PyTorch Geometric is an extension
of PyTorch which has efficient implementations of various
popular GNNs and allows user to create their own GNNs.
As an ablation study in §V shows found Sibyl performs best
with 4 GAT layers. With the exception of the ablation study,
all Sibyl networks discussed in this paper consist of 4 GAT
layers.

https://anonymous.4open.science/r/sibyl-884E
https://anonymous.4open.science/r/sibyl-884E


IV. EXPERIMENTAL DESIGN

We have designed and executed several experiments that
seek to evaluate Sibyl against the current state-of-the-art in
SMT algorithm selection along with several baseline selectors.
In doing so, we look to answer the following questions.
Data availability. All the code and datasets to reproduce this
study is available at [62] and at our code repository [63].

A. Research Questions

RQ1: For each domain, what portion of queries is the overall
fastest SMT solver the fastest? Depending on the domain, the
overall fastest solver is the fastest on 2.6% to 38.9% of the
queries.
RQ2: How does Sibyl’s predictions compare to other al-
gorithm selectors on software engineering domains? Sibyl’s
predictions are 37.6% to 159.7% better than existing selectors.
RQ3: How does Sibyl’s overhead affect its performance?
Sibyl’s overhead is non-negligible, but there is evidence to
suggest a more efficient implementation will greatly reduce it.
RQ4: How do the components of Sibyl’s GNN contribute to
its performance? When combined, the core GNN components
of Sibyl – GAT layers and a jumping knowledge layer –
improve Sibyl’s performance substantially.

B. Baseline Techniques

In order to understand the potential benefits and situate Sibyl
in the field of SMT algorithm selection, we compare it against
four baseline algorithm selectors for SMT. We could could not
compare against Hůla et al. as no artifact of their approach is
publicly available, which we confirmed with the authors.
Frequently Fastest Static Selector (FFSS). This selector runs
the solver which solved the most individual queries in the
training set the fastest. This will allows us to evaluate how the
solver which most frequently is fastest performs in general.
Overall Fastest Static Selector (OFSS). This selector runs
the solver cumulatively fastest on the entire training set. This
will act a baseline to determine if selection is beneficial, or if
a single solver will suffice.
Virtual Best Selector (VBS). This selector is the theoretical
optimal selector, given the portfolio, i.e., for each individual
query, it performs as the fastest solver. While such selection is
only possible a posteriori, thus not implementable in practice,
it allows comparison between selectors to see how much room
for improvement exists.
MachSMT. MachSMT is an algorithm selector that uses fea-
ture engineering and random forests to perform selection [18].
MedleySolver. MedleySolver is an algorithm selector which
uses feature engineering and reinforcement learning to select
SMT solvers [19].

C. Datasets and Domain Portfolios

Application Domains. To evaluate the selectors, we have
identified four domains in which SMT solvers are used: in
competition (SMT-COMP), bounded model checking (BMC),
symbolic execution (SymEx), and Syntax-Guided Synthesis
(SyGuS). For each of these domains, we observe single,

TABLE I: Dataset statistics. The logics in each theory category
can be found in the SMT-COMP description [13].

Dataset Theory Categories Queries Portfolio

SV-Comp’21 Arith 1,188 [44], [64]–[70]
Bitvec 857 [44], [65], [67], [70]
Equality 1,409 [44], [64]–[69], [71]
Equality+LinearArith 12,549 [44], [64], [66]–[69], [72]
Equality+MachineArith 547 [44], [65], [67]
Equality+NonLinearArith 1,600 [44], [64]–[68]
QF Bitvec 8,748 [44], [67], [71]–[74]
QF Equality 4,229 [44], [64], [67], [69], [71], [72], [75]
QF Equality+Bitvec 3,206 [44], [67], [71]–[73]
QF Equality+LinearArith 1,960 [44], [64], [67], [69], [71], [72], [76]
QF LinearIntArith 4,156 [44], [64], [67], [69], [71], [72], [75], [77]
QF LinearRealArith 725 [44], [64], [67], [69], [71], [72], [75], [76]
QF NonLinearIntArith 9,112 [44], [67], [71], [72], [78], [79]
QF NonLinearRealArith 2,210 [44], [67], [71], [72], [79], [80]

BMC QF Bitvec, QF Equality+Bitvec 100,000 [44], [67], [71]–[74]
SymEx QF Bitvec, QF Equality+Bitvec 91,810 [44], [67], [71]–[74]
SyGuS Equality+LinearArithm 100,000 [44], [64], [67], [69], [72]

Fig. 3: Query Time Distribution for each software engineering
domain. ESBMC has a relatively even mix of fast and slow
queries. KLEE and DryadSynth generated far more fast queries
than slow queries. DryadSynth generates nearly 100 queries
which time out, while KLEE generates none.

non-incremental queries. In principle BMC and SymEx, in
particular, may make use of incremental solving due to
their incremental nature—i.e. increasing the BMC bound and
traversing deeper, and deeper through the SymEx tree. How-
ever, incremental solving is not supported by majority of the
tools we observe, thus we focus the present study on non-
incremental queries. In the rest of this section, we describe the
way in which each dataset was obtained – which are publicly
available [34], [62] – and the domain portfolios – a set of
SMT solvers the selectors have access to for a given domain.
Selector Strategies. We wish to evaluate selectors with two
strategies: selection-only and selection-in-parallel. The first
strategy is pure algorithm selection: given a query, the selector
chooses a solver and runs it. In selection-in-parallel, a single
solver is run at the same time as the selector. If a query is
simple, the single solver will most likely solve the query before
the selected solver starts running. If the query is complex, the
selector should select the optimal tool which will ideally be
faster than the single solver. This strategy is motivated by
the observation that, in several practical domains, the solver



time follows a heavy-tail distribution, where a large proportion
of queries are fast to solve, while the remaining, smaller
proportion of queries accounts for most of the cumulative
execution time. Figure 3 displays a histogram of the time it
took solvers to solve the queries generated in the different
application domains. Because BMC has the highest propor-
tion of slow queries, we evaluate it using the selection-only
strategy. Selection-only is best when the domain has a high
proportion of complex queries, as selection-in-parallel will
waste resources running two solvers which may both take a
long time solving a query.

SymEx and SyGuS are both strong candidates for selection-
in-parallel. Because of their skewness towards fast queries, the
parallel solver could save on the cost of selection for a large
proportion of queries. We evaluate KLEE with the selection-in-
parallel strategy. Notably, pure selection can still be beneficial
in these skewed populations. To demonstrate this, we evaluate
SyGuS with the selection-only strategy.
Portfolios. For each domain, the portfolio is decided by the
logics in the domain’s dataset. Each SMT-COMP division
contains a number of solvers which were evaluated in the
competition. For each dataset, the portfolio consists of the
union of solvers in the datasets’ divisions. If multiple versions
of a tool were evaluated in the competition, we use the
version which was eligible for scoring. If none competed,
then we use the most recent. For information on solvers, see
the competition website [34]. Domain portfolios range from
3 to 8 solvers with an average of 6 solvers. Table I shows
the theories, size, and domain portfolio for each software
engineering dataset.

Experimental Subjects: SMT-COMP. In the single query
track, SMT-COMP 2021 evaluates SMT tools on over 54,000
queries in 18 categories of logics. From the 18 categories,
we omit 2, QF Strings and QF Equality+NonLinearArith, as
they have less than 500 queries. Since we are training machine
learning models that require training data, it is important that
there are a significant number of examples to both train and
evaluate the selectors. We must also omit categories dealing
with floating point logics, such as FPArith and QF FPArith, as
the SMT parsing library we use does not support them [59];
this omission is implementation specific, and there is nothing
which leads us to believe the technique would not perform
similarly with floats. This leaves 14 categories ranging from
547 to 12,549 queries with 3,599 queries on average.

The queries in this dataset cover 59 different SMT logics
and were generated by the SMT community for the competi-
tion. They reflect different SMT applications, as well as hand-
crafted queries designed to challenge solvers. This is the most
general of the datasets we will use.
BMC. ESBMC is a C bounded model checker based on an
SMT solver backend [12]. It generates queries that seek to
prove that a specification holds up to a bound and attempts to
extrapolate past the bound using K-Induction. These queries
must capture the program semantics and what is required to
prove the induction step. ESBMC will increase K until it finds
a violation, proves the specification holds, or it times out.

SV-COMP is an annual competition which evaluates soft-
ware verifiers on benchmarks asserting different types of
properties [81]. We ran ESBMC on 11,369 C files which
come from the SV-COMP’22 dataset. These C files come
from the four major categories of SV-COMP: reach safety,
memory safety, termination, and overflow safety [81]. ESBMC
supports several SMT solvers. In our experiments, we used
ESBMC version 6.8.0 with the solver Bitwuzla [73]. ESBMC
supports query dumping with Bitwuzla and it produced queries
all solvers in the portfolio supported.

For each C file, we ran ESBMC with a 15 minute timeout,
as is done in SV-COMP. It generated nearly 700,000 queries,
of which we randomly sampled 100,000 queries to create our
dataset. The queries fall into the logics in the QF Bitvec and
QF Equality+Bitvec divisions in SMT-COMP.
SymEx. KLEE is a symbolic execution engine which uses an
SMT solver backend to determine the reachability of program
execution states [7]. When interesting states are found (such
as the evaluation of a conditional branch or the occurrence of
an error), KLEE creates an SMT query that captures the path
condition leading to the state to confirm its reachability – and
possibly generate an input to witness it.

We ran KLEE version 2.2 on a subset of the GNU coreutils
and several other real world programs. We selected 20 of the
107 coreutils which we found produced queries which took
solvers (on average) no less than 0.5s to solve. These programs
are: basenc, cp, date, dircolors, du, md5sum, mv,
numfmt, ptx, seq, sha384sum, shuf, sleep, test,
timeout, tr, tsort, unexpand, uniq, and wc. We
selected 5 real world programs which KLEE is often evaluated
on [7], [10], [82]. These are: find, gawk, grep, gzip, and
make. KLEE was given 5 hours to run on each program. Like
ESBMC, KLEE generates queries that fall in the QF Bitvec
and QF Equality+Bitvec categories in SMT-COMP.

It is important that training data reflect the population a
model will be evaluated on. Since we evaluate SymEx with
the selector-in-parallel strategy – i.e., running Sibyl in parallel
to KLEE’s internal solver, STP [74] – we focus the training
and evaluation of Sibyl on the 93,996 KLEE generated queries
that took STP, KLEE’s default solver, more than 0.5s to solve.
SyGuS Syntax-Guided Synthesis (SyGuS) is a program syn-
thesis method that systematically generates candidate pro-
grams from a user-specified formal grammar and then verifies
the validity of a candidate using a constraints solver, typically
an SMT solver [83]. SyGuS-Comp was an annual competition
which evaluated program synthesis tools on a variety of
benchmarks dealing with several different logics. DryadSynth
is a program synthesis tool which competed in the most recent
competition, SyGuS-Comp’19, in two of five major categories,
Invariant Synthesis and Conditional Linear Integer Arithmetic,
the latter of which it won.

We ran DryadSynth on the benchmarks from the Invariant
Synthesis and Conditional Linear Integer Arithmetic categories
from SyGuS-Comp’19 with a 20 minute timeout. We excluded
programs DryadSynth produced errors on. From the remain-
ing 490 benchmarks, DryadSynth generated nearly 2,000,000



SMT queries in the Equality+LinearArith division from SMT-
COMP. As with the BMC, we randomly sample 100,000
queries to make up the dataset.

D. Selector Implementation and Training

In order to train and evaluate our selectors, we need to
retrieve labels for the datasets. To do so, we ran all queries
on StarExec [84] which provides the community compute
resources for tasks related to constraint solving. All nodes used
to collect labels ran CentOS 7 on a 2.40 GHz Intel(R) Xeon(R)
E5-2609 CPU with 256 GB of RAM. SMT-COMP uses the
same servers to run the competition, so we used their results,
which are publicly available, to generate labels.

Each query is labeled using a Penalized Average Runtime
2 (Par-2) score. If a solver correctly solves a query, the score
is the time it took to solve the query. If the solver reports
an incorrect response or exceed the given resources, its score
is twice the timeout value. In our studies, the timeout value
was 1,200s, the same as SMT-COMP 2021. Par-X scores are
frequently used by algorithm selectors as they are simple to
compute and allow selectors to weigh time and correctness,
prioritizing correctness [18], [85], [86].

Datasets were split into training and test sets. Due to their
small size, the divisions in the SMT-COMP dataset were split
using a 80-20 training-test split. The remaining datasets are
much larger, so they were split using a 20-80 split. This
will help mitigate against over-fitting. Each selector was then
trained on the training set using 10-fold cross validation. All
reported results are the average of the ten models trained using
cross validation and evaluated on the test set.

Training took place on various machines with different
specifications. Training resources are not pertinent to any of
our research questions or evaluation metrics, so this poses no
threat to validity. Sibyl models were trained for 25 epochs
with an initial learning rate of 1e-3. If loss did not decrease
after three consecutive epochs, the learning rate was reduced
by one order of magnitude. Once the learning rate reached
1e-8 or 25 epochs were reached, training ended. Sibyl uses
pair-wise margin ranking loss to train models. MachSMT
and MedleySolver were trained according to the repository
provided by the authors [18], [19]. Training times range based
on query size, with both MachSMT and Sibyl taking several
hours to train models on the largest datasets. FFSS, OFSS, and
VBS require no training. MedleySolver is an online approach,
meaning it learns during evaluation. Still, there is an overhead
to the tool, which resulted in evaluation taking roughly as
long as any other technique to train and evaluate. To evaluate
tool overhead, we ran each tool on identical servers running
CentOS with one Intel(R) Xeon(R) Bronze 3104 CPU @
1.70GHz, an Nvidia GTX 1080Ti GPU and 128GB of RAM.

V. EVALUATION

A. Solver Performance Diversity

To address RQ1, we begin by observing the performance
diversity of the various solvers in each domain’s portfolio. For
algorithm selection to be an interesting problem, there should

be a significant difference in performance between solvers on
a significant number of problems.

Table II shows the performance diversity of solvers on all
queries in the three divisions of SMT-COMP the software
engineering domains lie, QF Bitvec, QF Equality+Bitvec, and
Equality+LinearArith, and the performance of solvers on the
queries generated in the software engineering domains. For
each table, the first column lists the solver being evaluated,
the second is the portion of queries said solver is optimal
(correct and fastest), the third is the Par-2 score of the solver
on the dataset (lower is better). We omit examples from the
that no solver could solve, as this would only inflate every
solver’s score. This leaves 65,003, 74,667, and 79,981 queries
in the BMC, SymEx, and SyGuS test sets, respectively.

There are several patterns accross all six tables: (1) One
solver is optimal on over 50% of the queries; (2) A dif-
ferent solver has the lowest Par-2 score; (3) Each solver is
optimal on some number of queries, with the exception of
U.Elim+MathSAT and SMTInterpol; and (4) VBS greatly im-
proves on any solver in the Domain Portfolio. Moreover, there
is no general “best” solver in any domain. Solvers with rather
high Par-2 scores have several scenarios in which they are
optimal. Most important is point 4. While VBS is impractical,
it demonstrates the potential benefits of selection [18], [19].

RQ1: In the majority of the SMT-Comp domains and every
software engineering domain, the solver which can solve
the dataset fastest is the optimal solver on less than half of
the queries.

B. Selector Evaluation

In this section, we address RQ2 by evaluating the selectors
on each domain’s test set. Once again, we omit examples from
the test set that no solver could solve.
SMT-COMP. Table IIIa shows how selectors perform on the
SMT-COMP QF Bitvec category. To see how the solvers
perform on the remaining divisions, see our repository [63]. In
terms of Par-2 score, Sibyl performs on average 24.5% worse
than MachSMT, 268.0% better than MedleySolver, 12.1%
better than FFSS and OFSS, and 233.9% worse than VBS.

In our evaluation, MedleySolver performs noticeably worse
then the evaluation performed in [19]. This is most likely due
to our timeout values being orders of magnitude different. In
their evaluation, the solver timeout value is at 60s, as opposed
to ours which is 1,200s (the same as SMT-Comp). As a result,
all solvers can solve more problems, making it harder for
their reinforcement learning algorithm to learn when solvers
do poorly. In our evaluations, we find MedleySolver randomly
selects a solver, and continues using said solver for 99% of
problems, making their solver’s performance highly variant.

Of the divisions in SMT-COMP we evaluate the selectors
on, Sibyl is the best feasible selector in 2 divisions, QF Linear
RealArith and QF NonLinearIntArith, on the remaining 12
divisions MachSMT is the best. MachSMT’s features were
manually engineered for SMT-COMP. As a result, they per-
form very well on the benchmarks in the dataset. Below,



TABLE II: For each of the domains, there is no solver which is optimal on all queries. All but two solvers are optimal on
some number of queries. VBS shows the potential for improvement via selection is great, with a 8580% improvement over
the single best solver in the best case and a 175% improvement over the single best solver in the worst case.

(a) SMT-COMP - QF Bitvec

Solver Optimal Par-2 Score

Bitwuzla 0.1698 467,696
CVC5 0.0046 1,682,948
MathSAT 0.0214 2,790,731
STP 0.1819 526,930
Yices2 0.5687 474,132
Z3 0.0535 3,508,911

VBS 1.0000 61,389

(b) SMT-COMP - QF Equality+Bitvec

Solver Optimal Par-2 Score

Bitwuzla 0.3893 108,291
CVC5 0.0146 367,632
MathSAT 0.0065 306,687
Yices2 0.5747 235,774
Z3 0.0149 355,448

VBS 1.0000 16,309

(c) SMT-COMP - Equality+LinearArith

Solver Optimal Par-2 Score

CVC5 0.0468 546,587
iProver 0.0009 9,595,641
SMTInterpol 0.0004 4,622,626
U.Elim+MathSAT 0.0000 11,100,209
Vampire 0.0392 857,754
Verit 0.7107 1,422,231
Z3 0.2020 1,420,451

VBS 1.0000 12,332

(d) BMC

Solver Optimal Par-2 Score

Bitwuzla 0.1985 172,640
CVC5 0.0017 9,333,074
MathSAT 0.0126 4,516,230
STP 0.0789 24,686,601
Yices2 0.7049 217,680
Z3 0.0034 10,576,990

VBS 1.0000 45,567

(e) SymEx

Solver Optimal Par-2 Score

Bitwuzla 0.1358 254,607
CVC5 0.0023 6,692,003
MathSAT 0.0013 1,702,864
STP 0.2049 37,654
Yices2 0.6212 936,809
Z3 0.0344 1,215,535

VBS 1.0000 21,503

(f) SyGuS

Solver Optimal Par-2 Score

CVC5 0.0261 166,811
U.Elim+MathSAT 0.9336 297,170
SMTInterpol 0.0000 2,569,827
veriT 0.0003 239,800,801
Z3 0.0400 2,367,390

VBS 1.0000 1,944

TABLE III: MachSMT is the optimal selector in majority of SMT-Comp categories. Across each software engineering domain,
however, Sibyl is the optimal feasible selector. MachSMT and MedleySolver were tuned specifically to SMT-Comp. Sibyl
learns to calculate feature vectors, allowing it to specialize based on the training data.

(a) SMT-COMP QF Bitvec

Selector Optimal Par-2 Score

Sibyl 0.73 ± 0.01 63,807 ± 3,081
MachSMT 0.34 ± 0.09 51,256 ± 6,017
MedleySolver 0.14 ± 0.17 234,831 ± 178,681
FFSS 0.60 ± 0.00 71,498 ± 0
OFSS 0.60 ± 0.00 71,498 ± 0

VBS 1.00 ± 0.00 16,734 ± 0

(b) BMC

Selector Optimal Par-2 Score

Sibyl 0.60 ± 0.01 113,495 ± 20,711
MachSMT 0.34 ± 0.09 219,186 ± 28,016
MedleySolver 0.38 ± 0.20 1,140,597 ± 1,277,414
FFSS 0.70 ± 0.00 181,007 ± 0
OFSS 0.20 ± 0.00 142,009 ± 0

VBS 1.00 ± 0.00 37,397 ± 0

(c) SymEx

Selector Optimal Par-2 Score

Sibyl 0.69 ± 0.01 19,533 ± 1,081
MachSMT 0.30 ± 0.16 27,765 ± 3,791
MedleySolver 0.33 ± 0.25 254,274 ± 253,911
FFSS 0.62 ± 0.00 742,406 ± 0
OFSS 0.21 ± 0.00 30,230 ± 0

VBS 1.00 ± 0.00 17,211 ± 0

(d) SyGuS

Selector Optimal Par-2 Score

Sibyl 0.27 ± 0.06 11,359 ± 7,788
MachSMT 0.93 ± 0.01 18,145 ± 15,606
MedleySolver 0.11 ± 0.27 151,459 ± 53,243
FFSS 0.93 ± 0.00 234,377 ± 0
OFSS 0.26 ± 0.00 127,695 ± 0

VBS 1.00 ± 0.00 1,555 ± 0

we evaluate the selectors on software engineering domains in
which SMT solvers are used to show their performance when
trained and evaluated on specific problem classes.

Software Engineering Domains. Table III shows how selec-
tors perform on the three software engineering domains. In
terms of Par-2 score, Sibyl performs on average 64.3% better
than MachSMT, 1,221.3% better than MedleySolver, 2,031.1%
better than FFSS, 469.0% better than OFSS, and 381.8% worse
than VBS across the three domains.

In BMC and SymEx, Sibyl makes roughly twice as many
optimal choices as the next best, feasible, selector, MachSMT.
This reflects in the Par-2 scores where Sibyl is on average
66.7% lower than MachSMT. In SyGuS, however, MachSMT
makes nearly 3 times as many optimal selections, yet Sibyl
is again better. When Sibyl is making non-optimal choices, it
chooses solvers which perform close enough to the optimal
solver; on the 7% of non-optimal choices MachSMT makes
Sibyl can score 6,786 lower in terms of Par-2 score.

To understand why it is that MachSMT outperforms Sibyl
on the SMT-Comp domain but not the Software Engineering
domain, we examined the feature vectors from each domain.

Figure 4 displays the range of values each feature in the
MachSMT’s feature vector takes across the entirety of each
domain (blue, dashed lines) compared to the SMT-Comp
category of the same logic (red, solid line). Each line spans the
minimum to maximum value of a given feature, normalized
by dividing the values by the maximum value of the feature
across all domains. We find that there is a significant difference
between the population of features between the SMT-Comp
category and a given SE domain.

On average, 35.5% of features in an SMT-Comp category
do not appear in the corresponding SE domain. Additionally,
each software engineering domain contains on average 8.5%
more features which do not appear in the SMT-Comp category.
In the BMC and SymEx domains, there are 17 features which
span 95% of the value range and 22 in the corresponding SMT-
Comp categories, with no overlap between these two sets of
features. In the SyGuS domain, 8 features span 95% of the
value range and in the corresponding SMT-Comp domain there
are 12. Once again, there is no overlap between these sets
of features. We conjecture that this difference in population
results in a worse performance, as the features were selected



Fig. 4: Normalized engineered feature vector ranges for each
SE domain. Each line represents the normalized range from
minimum to maximum values for a given feature for both SE
domain generated features (blue, dashed line) and SMT-Comp
category generated features (red, solid line). Absent lines mean
that feature never appeared in the dataset.

for a different population.

RQ2: Across all three SE Domains, Sibyl is the best
performing, feasible, selector and is on average 63% better
than the next best selector.

C. Overhead evaluation

In order to address RQ3, we evaluate Sibyl’s overhead. That
is, we measure the overhead of our implementation of Sibyl to
determine the practicality of the technique if it was used by a
software engineering tool to select an SMT solver. It would be
costly to integrate into existing tools, which are often highly
complex with sophisticated solver subsystems, so we chose to
study a proxy setting where we use PySMT and study solve
times for domain-specific collections of queries.

In practice, software engineering tools build queries on the
fly in memory using a programmatic API by traversing a tool-
specific representation of the SE problem. To simulate this, we
use PySMT’s internal representation as a starting point. We
compare Sibyl to MachSMT and OFSS as these two are the
second fastest solver in at least one category. First, Sibyl and
MachSMT generate graphs and feature vectors, respectively,
which we call preprocessing. Second, they perform prediction

Fig. 5: Overhead evaluation with breakdown of costs of SMT
selectors and comparison with OFSS and VBS across three
SE domains.

to select the solver to use. Third, they translate PySMT internal
representation to that solvers representation via API calls,
which we call solve. OFSS performs only solve.

Figure 5 shows the performance of each selector on the
three software engineering domains. Each bar includes the
Par-2 score, preprocessing overhead, and prediction overhead
stacked to show the overall performance of the given selector.
For each domain, there is a black line indicating the optimal
selector performance (VBS). In BMC and SymEx, Sibyl’s
overhead is high enough that OFSS now solves the test set
faster. In the SyGuS domain, Sybil is still marginally better
than MachSMT and significantly better than OFSS.

There is variation within and across the domains, but we
can observe several broad trends. MachSMT’s feature vector
extractor is on average 653% faster than Sybil’s graph builder.
However, Sybil’s predictor is 1,151% faster than MachSMT’s.
This allows Sybil to begin solving faster than MachSMT and,
as we have shown, it chooses better solvers.

In the SyGus category, Sibyl is the fastest approach. In the
BMC and SymEx categories, Sibyl’s overhead is high enough
that OFSS is the best selector. This is mainly due to Sibyl’s
graph building overhead. To investigate whether graph build-
ing is an inherent cost, or just due to suboptimal performance
in PySMT’s pure Python AST walker, we integrated a Sybil
graph builder into ESBMC, with graph building implemented
in C++ and compiled. We ran it on a corpus of 779,529 queries
generated by ESBMC when run on SV-COMP22 and found
that graph building took on average 0.012s with a standard
deviation of 0.037s. In contrast, the PySMT graph builder
took on average 0.801s, with a standard deviation of 2.19s.
Extrapolating to the 80,000 queries used in this study graph
building cost reduction would make the overall cost of Sibyl
13.1% faster than OFSS.

Further, the VBS line shows the potential improvement that
exists for selectors. In the BMC and SyGuS categories, our
Python-based prototype implementation of Sibyl has signifi-
cant room for improvement in predictions which suggests that



TABLE IV: Ablation of Sibyl’s GNN evaluated on the SymEx
domain. As the number of GAT layers rise, the JK layer
becomes more impactful. A network with 3 GAT layers
performs best for the SymEx domain.

GAT
Layers

Jumping
Knowledge Optimal Par-2 Score

0 N/A 0.64 ± 0.02 21,063 ± 1,112
1 False 0.66 ± 0.02 21,003 ± 1,761
1 True 0.69 ± 0.01 21,059 ± 1,105
2 False 0.63 ± 0.02 23,148 ± 2,340
2 True 0.69 ± 0.01 20,171 ± 1,207
3 False 0.62 ± 0.02 25,750 ± 6,560
3 True 0.69 ± 0.01 19,233 ± 281
4 False 0.57 ± 0.04 23,980 ± 1,984
4 True 0.69 ± 0.01 19,811 ± 1,093

it could further outperform OFSS in those domains.

RQ3: Sibyl outperforms MachSMT. While it’s overhead
is non-negligeable, it outperforms OFSS in the SyGuS
category and has potential to do so also for BMC problems.

D. Ablation Study

In order to answer RQ4, we perform an ablation study on
Sibyl’s GNN. There are two main components to the GNN:
GAT Layers and a JK layer. We trained networks on the
SymEx domain with 0-4 GAT layers, with and without a JK
layer. We chose the SymEx domain as Sibyl performs closest
to VBS in this domain. The results are listed in Table IV.

GATs and the JK layer appear to be related in terms of
model performance. As GAT layers increase, Par-2 score
improves when the JK layer is present and worsens when it
is not. Similarly, the benefit of the JK layer tends to become
more significant as GAT layers rise. JK layers concatenate
the intermediate representations of the graph into a single
vector, allowing the model to learn from each intermediate
representation. These results imply that there is information
the model can use to make accurate predictions from one
or more of these intermediate representations, making the JK
layer beneficial.

Each additional GAT layer results in a node’s representation
being calculated from neighbors further away, effectively en-
coding more of the graph structure in each node. This is more
information the model can use when differentiating between
queries and looking for similarities.

Depending on the domain, the best network architecture
may differ. When determining Sibyl’s architecture, we per-
formed a search on the number of GAT layers, and found
in general 4 layers performed best across our specialization
domains. These results show 3 GAT layers perform marginally
better for the SymEx domain. In practice, it can be beneficial
to train and evaluate several network architectures to determine
which is best for a given population.

RQ4: When combined, both configurable components of
Sibyl’s GNN have a positive affect on its ability to make
predictions.

E. Threats to Validity

A potential threat to the validity of our experiments is the
potential for bugs in our implementation. To mitigate this,
we perform several sanity checks via assertion statements to
ensure certain invariants hold. These include checking that we
are recording the SMT graph correctly, labels are between
the minimum and maximum Par-2 scores, that the GNN is
stable (not producing infinite or NaN values), etc. We used
widely adopted libraries to parse SMT inputs and implement
our training procedures. Our implementation is available for
review at https://anonymous.4open.science/r/sibyl-884E.

Another possible threat to validity is the tools we used
to populate our domains. Bounded model checking, sym-
bolic execution, and syntax-guided synthesis are software
engineering problems which have garnered much attention.
ESBMC and DryadSynth are both competitive tools in their
respective domains, performing well in competition [81], [87]–
[89]. KLEE is a widely used symbolic execution engine. SMT
solving is a known bottleneck in the KLEE pipeline and has
been the subject of study and optimization [90]–[92]. This
leads us to believe these are strong subjects to study.

VI. CONCLUSION

We presented Sibyl, an algorithm selection technique based
on graph neural networks for SMT solver selection. Sibyl
converts SMT queries into graphs which its GNN uses to
determine which solver from a portfolio of solvers should
be used to solve the query. Because Sibyl learns feature
encodings, it requires no domain knowledge to tailor solver
selection to the peculiarities of an application domain. A
developer need only train a model using data from the domain,
without requiring any human feature engineering.

We evaluated Sibyl on over 300,000 SMT queries from
SMT-COMP and three datasets comprised of queries generated
using three software engineering tools: a bounded model
checker, a symbolic executor, and a program synthesizer.
On these three software engineering domains, we found that
selection via Sibyl would solve a sample of queries in these
domains between 37.6% to 159.7% better than the state of
the art. While our Python-based prototype has a significant
overhead for graph building, we demonstrated how such
overhead can be drastically reduced integrating graph building
within the internal query representation of an analysis tool
– ESBMC in our exploratory study – and optimizing it via
compilation.
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E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[61] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[62] W. Leeson, M. Dwyer, and A. Filieri, “Sibyl datasets,” Jan. 2023.
[Online]. Available: https://doi.org/10.5281/zenodo.6521826

[63] ——, “Sibyl,” https://archive.softwareheritage.org/browse/directory/
bc493ad1d1631b4ae92b007340fdba3df4518526/, 2023.

[64] J. Christ, J. Hoenicke, and A. Nutz, “Smtinterpol: An interpolating smt
solver,” in International SPIN Workshop on Model Checking of Software.
Springer, 2012, pp. 248–254.

[65] M. Barth, D. Dietsch, L. Fichtner, M. Heizmann, and A. Podelski,
“Ultimate eliminator at smt-comp 2021,” 2021.

[66] G. Reger, M. Suda, and A. Voronkov, “Instantiation and pretending to
be an smt solver with vampire,” in Proceedings of the 15th International
Workshop on Satisfiability Modulo Theories, CEUR Workshop Proceed-
ings, vol. 1889, 2017, pp. 63–75.

[67] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli et al., “cvc5:
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