
A Compositional Method for Reliability Analysis of
Workflows Affected by Multiple Failure Modes

Salvatore Distefano
Università di Messina

Messina, Italy
Politecnico di Milano

Milano, Italy
sdistefano@unime.it,

distefano@elet.polimi.it

Antonio Filieri
Carlo Ghezzi

Raffaela Mirandola
Politecnico di Milano

Milano, Italy
filieri,ghezzi,mirandola@elet.polimi.it

ABSTRACT
We focus on reliability analysis for systems designed as workflow-
based compositions of components. Components are characterized
by their failure profiles, which take into account possible multiple
failure modes. A compositional calculus is provided to evaluate the
failure profile of a composite system, given failure profiles of the
components. The calculus is described as a syntax-driven proce-
dure that synthesizes a workflow’s failure profile. The method is
viewed as a design-time aid that can help software engineers rea-
son about system’s reliability in the early stage of development. A
simple case study is presented to illustrate the proposed approach.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability; D.2.8 [Software Engineering]: Metrics

General Terms
Reliability, workflow, components, services, probability

1. INTRODUCTION AND MOTIVATIONS
Component-based software engineering identifies in the concept

of component as a building block the elementary unit in software
architecture modeling, assessment, development, and management.
This follows from three main principles of software engineering:
separation of concerns, modularization, and reuse. According to
such perspective, a software system is an aggregate of (software)
modules or components. This paradigm is at the basis of modern
service-oriented architectures (SOAs), in which the components
assume the form of (Web) services selected and aggregated into
composed processes. In the case of Web services, compositions
are implemented through a workflow language, like BPM ([27]) or
BPEL ([1]).

In the SOA case, application components are owned (developed,
deployed, maintained, and operated) by possibly different stake-
holders. They are viewed by clients as black boxes. In the rest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE’11, June 20–24, 2011, Boulder, Colorado, USA.
Copyright 2011 ACM 978-1-4503-0723-9/11/06 ...$10.00.

of this paper, the term component-based software is used to indi-
cate a wide range of software architectures, ranging from the case
in which (commercial) off-the-shelf COTS components are inte-
grated into the application to the case of service compositions. Ac-
cordingly, the term component is also used to denote a service. We
further assume compositions to be described by an abstract work-
flow language, which is later described in Section 2. The language
supports a minimal set of structured composition patterns. Other
more complex patterns may be defined in terms of the structured
set.

Non-functional properties of component-based software systems
are a crucial design-time concern. Architectural decisions, includ-
ing selection of components and the structure of the workflow, may
significantly affect the qualities of the resulting system, such as
their reliability, performance, or cost. This paper focuses on reli-
ability. Early assessment of reliability at design time is one of the
challenges of component-based architectures and a key factor to
developing dependable software.

Component-based architectures allow designers to reason on sys-
tems’ reliability at a higher level of abstraction. At the modeling
level, components can be viewed as black-box units. Because com-
ponents are subject to reuse, we may expect data to be available
on their observed behavior, such as their failure profile. Based on
a model of the architecture, which describes how components are
connected together and interact, we expect well-founded methods
to be available to software engineers to reason about satisfaction of
the global system’s reliability requirements.

We consider as a failure an observed condition or state that shows
that a system does not meet its intended objective. Referring to [3],
we acknowledge that each application domain has its own concerns
about what should be considered as a failure and what can be the
impact of each type of failure produced by a component in the exe-
cution flow through components. We define failure mode a possible
way in which a component, or an aggregation of components can
fail.

Avizienis et al. [3] clearly describes the need to deal with mul-
tiple different failure modes. A single Boolean domain (failure/no
failure) is not expressive enough to represent important pathologi-
cal behaviors. Moreover, in the same paper the authors also stress
the importance of considering the error propagation process among
system components. Nonetheless, few modeling approaches deal
with error propagation across a component-based system (e.g., [11,
23, 2]) and with multiple failure modes [13]. On the other hand, to
get a complete view of the possible failure pathology of the whole
system, it is important to take into account that components can
experience a number of different failure modes and those failures

can propagate in different ways across the execution flow, possibly
spreading up to the application interface.

In [13] we already explored the notion of a component failure
profile, which can include information about the emergence, prop-
agation, and transformation of errors in the execution flow of a run-
ning system, eventually leading to a failure. Our past work was
founded on the use of Discrete Time Markov Chains (DTMCs), a
well-known stochastic model, which proved to be be applicable to
reliability modeling and analysis (e.g., [17, 25]).

In this paper instead we provide a method that allows the eval-
uation of the failure profile of applications designed as structured
workflow-based compositions, based on the failure profiles of the
individual components. In our analysis, we assume that failures
may only occur in the execution of a task and may only propagate
through invocations of components; that is, the internal workflow
operations do not generate failures. Our method can help the soft-
ware engineer evaluate the effect of components’ failures on the
overall reliability of the workflow; for example, whether certain
failures that may be generated by a component invocation eventu-
ally manifest themselves at the workflow interface or instead they
only generate internal faulty states with no visible external effect.

The method we present in this paper differs from [13] in the mod-
eling and analysis approach. Concerning modeling, it does not need
to generate a DTMC in order to accomplish reliability verification.
The analysis is performed directly on the abstract workflow. This
may reduce the burden for designer, who is no longer required to
deal with the generation of Markov models and Probabilistic Com-
putation Tree Logic (PCTL) [22], although the transformation may
be automated. Concerning analysis, this new approach is directly
focused on the computation of closed formulae by means of alge-
braic operations. These formulae can then be analyzed in a num-
ber of way. Also, the entire analysis process is intrinsically com-
positional; it recursively constructs the reliability formulae for the
whole structured workflow by composing the formulae for its con-
stituent patterns.

This paper is organized as follows. In Section 2 we provide some
background concepts on component-based systems and workflows,
also characterizing the problem in more formal, algebraic terms
and identifying the quantities to evaluate. Then, Section 3 spec-
ifies our analysis technique through algebraic rules that apply to
simple sequential composition patterns. Section 4 discusses how
the parallel composition pattern may be handled. Then Section 5
presents a syntax-driven algorithm that recursively analyzes com-
plex component-based software workflows, starting from the ag-
gregation rules of basic sequential and parallel workflows. An ex-
ample taken from literature is therefore evaluated by applying the
proposed technique as described in Section 6. Then, in Section 7
we try to provide a quick overview on related work, and finally,
in Section 8, some remarks of the technique and future work are
discussed.

2. PRELIMINARY CONCEPTS
Component-based systems are defined by their structures and

their behaviors. As we mentioned, the behavior is assumed to be
described by a workflow, which specifies the flow of control among
components.

The Workflow Management Coalition defines a business process
as [31] “a set of one or more linked procedures or activities which
collectively realise a business objective or policy goal, normally
within the context of an organisational structure defining functional
roles and relationships." A workflow is instead “the automation of
a business process, in whole or part, during which documents, in-
formation or tasks are passed from one participant to another for

action, according to a set of procedural rules." An activity (task) is
a description of a piece of work that forms one logical step within a
process. In this paper, activities correspond to invocations of exter-
nal components. All other internal activities to the workflow (for
example, in BPEL assignments to internal variables) are simply ig-
nored, because we assume that they do not affect reliability.

An executing workflow is called an instance process. In our
work, we assume that different instance processes of the same work-
flow do not interfere with each other at run time.

Workflows are specified by combining tasks through control struc-
tures that determine admissible execution paths [37]. A survey
by van Der Aalst et al. in [32] identifies and characterizes sev-
eral workflow patterns. For simplicity, in this paper we restrict our
analysis to the three basic patterns of structured programming (se-
quence, branch and loop) for sequential parts. It is well-known
that the three sequential patterns we select allow any other pattern
to be described in terms of them [6]. The fork-join pattern is more
complex. In fact, there are different kinds of synchronization possi-
bilities for the join operation. For example, we may wish to specify
that we wait for just the first k out of the total number of threads
launched. In this case, we also need to make assumption on the
completion order of the different threads. This problem will be dis-
cussed in more general terms later in Section 4. Our control flow
structures are summarized in Table 1.

To support a formal definition of workflows, in the next sub-
section we introduce a reference grammar covering the basic con-
structs. The grammar can be easily extended to enrich the language
with additional workflow patterns. Then, in Section 2.2, we formal-
ize the reliability properties we are interested in.

2.1 Workflow syntax
Table 2 presents the grammar of the structured workflow lan-

guage in BNF-like form. A workflow is defined as a list of state-
ments. Each statement can be a sequence, a branch, or a loop. The
fork-join construct supports parallel composition. We consider a
sequence as a non-empty list of statements. The branch construct
contains exactly two branches, the if and the else, both containing
a list of statements, and a condition. The condition represents the
probability to take the if branch. Notice that the list of statements
can possibly be empty, allowing to define a single-edged branch.
The loop construct is characterized by a list of statements, its body,
and a condition – the probability of iteration. Since conditions c
are probabilities, they are represented by real numbers in the range
0 ≤ c ≤ 1.

As we said, in our context a task, referred to by an identifier,
represents the invocation of an external component. The approach,
however, can be generalized by assuming a domain-dependent no-
tion of task. In this case, it would be up to the designer to decide
which are the relevant software tasks to be used in the model, both
in terms of granularity and relevance. For example, several oper-
ations can be aggregated in order to reduce the complexity of the
reliability view of the system; or, on the other hand, the reliabil-
ity view can be kept as close as possible to the functional view to
simplify coherence checks. We may also assume that certain inter-
nal operations may fail, and therefore consider them as tasks. In
general, tasks correspond to the atomic units of information upon
which we wish to perform reliability analysis.

2.2 Reliability properties
We assume that tasks, when invoked, either respond by returning

control and yielding correct data values or they fail. We distinguish
between two kinds of failures. The former occurs when the task
does not return control to the invoking task. That is, the invoked

9

Control construct Description Graphical notation

Sequence Ordered list of tasks.

A B

Branch Conditional choice between two execution paths. One
branch is chosen with probability c (the other branch is
chosen with probability 1-c).

A

B

c

1-c

Loop The body (task A) is iterated, at each step with proba-
bility c.

1-c
c

A

Fork-Join Fork indicates the starting point of multiple threads to
be run in parallel. Join marks the synchronization point
and can have application specific semantics.

T1

Tm

Table 1: Control patterns for workflow composition.

1: workflow → "begin" stmtlist "end"
2: stmtlist → ε
3: stmtlist → stmt stmtlist
4: stmt → sequence
5: stmt → branch
6: stmt → loop
7: stmt → fork
8: sequence → task
9: sequence → task ";" sequence
10: branch → "if" condition "then" stmtlist

"else" stmtlist "endif"
11: loop → "while" condition "do" stmtlist "endwhile"
12: fork → "fork" forklist "join"
13: forklist → stmtlist
14: forklist → stmtlist "||" forklist
15: condition → 0 ≤ value ≤ 1
16: task → identifier

Table 2: Reference grammar for structured workflow specifi-
cation.

task appears to the invoker as a non-terminating task. This, in prac-
tice, corresponds to detecting an invocation timeout, which may for
example occur because of message loss by the network or because
of request dropout by the server that runs the invoked task. The
latter instead corresponds to a specific named failure (or exception)
transferred to the invoking task by the invoked component.

Accordingly, hereafter we consider the following task-level prop-
erties related with failures: response probability and propagation
matrix. Response probability (α) represents the probability that an
invoked task returns the control. Formally, the invocation of a task
can be described as a Bernoulli test for its termination. α is then
the expected value of such a test:

Pr(taski terminates) = αi

By generalization, the response probability of a combination of
tasks represents the probability that the entire combination returns
the control, and its value strictly depends on how the tasks are com-
bined as will be shown in Section 3.

In this paper we consider α to be input and time-independent.
This is a strong assumption we plan to relax in future work, by
allowing dependency from input patterns as in [13]. We will also
try to enhance the response probability distribution by making it
time-dependent, i.e. defining α(t) as a boolean function varying
during time. Both the extensions require an improvement of the
mathematical procedures of Section 3.

The motivation for considering the propagation matrix can be
traced back to Avizienis et al. [3], who notices that by only con-
sidering halting failures we would get approximate results, unable
to capture critical reliability aspects in a number of domains. A
task can return control to its invoker and still yield an erroneous
output, which is viewed by the caller as a failure. In [3] the au-
thors propose to consider at least timing and content failures. In
our work, we assume that for each component that may be used
in a composition the software designer knows its finite set of rele-
vant failure patterns, called failure modes. As we mentioned, not

all possible failures generated by a component necessarily propa-
gate through other components and eventually become visible as
failures of the whole workflow. In fact, a failure generated by a
component may be confined inside the workflow boundaries. In
this work, we are interested in modeling how each component may
react as it receives a certain input pattern by providing a probabilis-
tic transfer function. Specifically, in this paper we consider linear
transfer functions defined for each task by its propagation matrix.

The propagation matrix Pt of a task t is defined as a n×nmatrix
such that ptij represents the probability that t, invoked with incom-
ing error mode i, returns an output error mode j, provided that t
returns. Pt is a right stochastic matrix, i.e. a square matrix each of
whose rows contains only nonnegative real numbers summing to 1.
For generality, we consider mode 0 to denote the correct behavior
of the component (correct mode).

DEFINITION 2.1. A task t is characterized by the pair< αt,Pt >,
where αt and Pt are the response probability and the propagation
matrix of t, respectively.

As introduced in [9], the reliability of a component strictly de-
pends on its usage. In our framework, the usage profile of a com-
ponent, and thus that of the invocation of its tasks, has to be char-
acterized with respect to the set of failure modes. Specifically we
define the usage profile β as follows.

DEFINITION 2.2. The usage profile βt of a task t is a stochastic
vector with n elements, such that βti represents the probability that
the invocation of t carries error mode i.

In other words, βt can be seen as the probability mass function of
a discrete random variable with n possible outcomes corresponding
to the indices of its elements (numbered from 0). Such probabil-
ity mass function has to be inferred from historical usage data or
guessed on the basis of the expected users behavior.

The outcome of the invocation of a task t with usage profile βt

(assuming that t returns) can be obtained applying t’s propagation
function to βt: βt · Pt.

Following [13], we can now define a number of reliability-related
properties:

• Reliability: the probability that a task t produces a correct
output given that it was invoked without any erroneous pat-
tern:

Rt = pt0,0 · αt

• Failure probability of error mode i, 0 < i ≤ n: probability
that a task t invoked in correct mode returns with error mode
i:

F ti = pt0,i · αt

• Robustness with respect to error mode i, 0 < i ≤ n: prob-
ability that a task t, invoked with error mode i, masquerades
the error and returns a correct output:

Bti = pti,0 · αt

• Susceptibility with respect to error mode i, 0 < i ≤ n:
probability that a task t, invoked with error mode i, produces
an erroneous output with any error mode (i.e., susceptibility
is the complement of robustness):

Sti = αt ·
n∑
j=1

pti,j = 1− pti,0 = 1−Bti

By adding information concerning the usage profile, it is possible
to define more properties. For example it is possible to define:

• Proclivity with respect to error mode i, 0 < i ≤ n: proba-
bility that a task t produces in output an error mode i given
the usage profile βt:

Lti = αt ·
∑
r

βtr · ptr,i

The above properties are just examples to illustrate, without any
sake of completeness, the use of α and P to specify finer reliability-
related properties.

3. PROPERTY COMPOSITION FOR
SEQUENTIAL PATTERNS

In this section we introduce the mathematical procedures to com-
pute both response probabilities and propagation matrices of each
sequential workflow pattern, starting from their corresponding val-
ues for the composed tasks. The parallel composition pattern is
described separately in Section 4. The formulae we present here
and in Section 4 will be invoked by a recursive computation, as de-
scribed in in Section 5, in order to support the evaluation of nested
workflow patterns, as described by our grammar. The result will
be a calculus for evaluating the overall response probability and
propagation matrix.

3.1 Sequence
Given two tasks A and B connected in a sequence S as shown

in Table 1, we wish to compute the overall values αS and PS given
the values αA, PA, and αB , PB for tasks A and B, respectively.
Concerning the overall response probability, we observe that the
sequence S returns control to the invoker if both A and B return
the control. Thus:

αS = αA · αB (1)

As for the propagation matrix, we observe that the output of task
A for a generic usage profile β can be computed as β · PA and
such an output is sent directly as input to task B. Hence the final
outcome is (β ·PA) ·PB . By exploiting the associative property of
matrix product, it is easy to derive the propagation matrix for the
sequence of two tasks as:

PS = PA · PB (2)

3.2 Branch
A branch (see Table 1) represents a point of probabilistic choice

between two branches. Given two task choices A and B connected
in a branching pattern Br, we wish to compute the overall values
αBr and PBr for the composed pattern given the values αA, PA,
and αB , PB for tasks A and B, respectively.

The propagation matrix of a branch can be formalized though the
total probability theorem:

PBr = c ·PA + (1− c) ·PB (3)

The same reasoning can be applied to computing the response
probability:

αBr = c · αA + (1− c) · αB (4)

3.3 Loop
The loop pattern in Table 1 has a condition that represents the

probability of executing its body task A. We wish to compute the
overall values αL and PL for the composed pattern L given the
values αA and PA for task A.

The simplest way of reasoning about this construct is to look at
it as a branch with condition c that can return the control to the
beginning of the loop after each iteration. Thus, being PL our
unknown, by applying equation 3,

PL = (1− c) · I+ c ·PA ·PL (5)

where I represents the identity matrix.
With basic algebraic manipulations, equation 5 can be solved

obtaining:

PL = (1− c) · (I− c ·PA)−1 (6)

A similar reasoning leads to the computation of the response
probability for a loop construct, as:

αL =
1− c

1− c · αA (7)

4. PROPERTY COMPOSITION FOR PAR-
ALLEL PATTERNS

The parallel composition pattern is quite complex and deserves
careful analysis. The main difficulty is that the same syntactic
structural pattern can have different semantics, as anticipated in
Section 2. To distinguish among them, the join operation that merges
the different threads should in fact be enriched with specific, application-
dependent semantic annotations that specify the intended meaning
of the join. The intended meaning affects the way we can compute
the response probability and the propagation matrix, given the val-
ues of the same attributes for the composing threads. In the sequel,
we draw our attention to a number of typical cases.

Let us consider the parallel pattern as described in Table 1. Let
αi and Pi be the response probability and the propagation matrix
for all threads Ti. From these, we discuss how to compute the
values αFJ and PFJ associated with the fork-join pattern FJ .

Case 1: 1 out of m.
This case refers to a Fork-Join pattern where termination of only

one task is sufficient for the parallel composition to terminate. In
practice, this case may occur when different instances of the same
task are launched in parallel on a number of different processing
units, and we wait for termination of the first one. As an example,
consider the download of a file from several mirror sites. Comple-
tion of one download fulfills our goal.

In Case 1, the response probability α for the parallel construct
can be computed as the probability that at least one of them threads
returns:

αFJ1m = 1−
m∏
i=1

(1− αi) (8)

In order to specify the propagation matrix, let us define the func-
tion h : {1..m} → [0, 1] as the probability for a thread to complete
before all the others. This corresponds to the probability of being
the one waited for at the join, then the expected propagation matrix
can be computed as:

PFJ
1m =

m∑
i=1

h(i) ·Pi (9)

In practice, the probability distribution of the completion of the
different threads can be derived by an easier to define metric for
the threads, i.e., their average execution time. If τi is the average
execution time of thread Ti then (according to [10]) h(i) can be
computed as:

h(i) =

1
τi∑
i

1
τi

(10)

assuming that the execution time of each thread follows an ex-
ponential distribution.

Case 2: m out of m (any order).
This case refers to the situation in which the Fork-Join pattern

terminates only when all the parallel threads return control. The
arrival order of their responses instead is irrelevant.

Think for example of a map-reduce approach applied to image
processing, where the initial image is split into m equal areas and
sent to m parallel threads that apply the same filter to every piece
and with the additional requirement that all the parts of the image
must be processed. The join node simply collects all the results
and puts them together to deliver the manipulated image to the fi-
nal user. In this case the order of completion of the m threads does
not matter, but just the fact that all of them complete the assigned
job. Concerning the response probability, it is straightforward to
consider the return of control of the parallel construct as the proba-
bility of the event that all of the m threads return the control to the
invoker:

αFJmm =

m∏
i=1

αi (11)

Concerning the propagation matrix, given the equal division of
the image among the m tasks, it is reasonable to consider that for
each out-going error mode of each single task, its impact on the
global output is proportional to the affected fraction of the input
processed by the task. Applying the same consideration to all of
the m parallel threads, the expected propagation matrix can be ap-
proximated as:

PFJ
mm =

1

m

m∑
i=1

Pi (12)

Case 3: k out of m (any order).
Consider a variation of the previous case, in which the parallel

composition terminates when k out of them threads return the con-
trol. We still assume that the order in which they terminate does not
matter.

For instance, consider a variation of the image processing exam-
ple, in which the image processing can terminate as soon as the
manipulation of any k out of the m subareas of the image are com-
pleted.

The join node can transfer control as soon as any group of k
threads accomplish the task. Thus we can split the problem in
two steps: 1) identify the group of k threads which accomplish the
tasks before the others and 2) compute the properties of this lead-

ing group. Let Ck be the set of all the combinations of class k over
the m threads, and let h : Ck → [0, 1] represent the probability for
each group Cki to be the first group to complete the assignments:

αFJkm = 1−
∏

Cki∈Ck

(1−
∏
j∈Cki

αj) (13)

With the same approach, PFJ
km can be computed as:

PFJkm =
∑

Cki∈Ck

h(Cki) ·
1

k

∑
j∈Cki

Pj (14)

5. PARSING THE WORKFLOW
Given the definition of the workflow language in Section 2.1, it is

possible to define the algorithm that evaluates the overall response
probability and the propagation matrix by augmenting the grammar
with attributes. The resulting attribute grammar ([26, 28]) allows
the response probability and the propagation matrix of a workflow
to be computed as the workflow is parsed by a bottom-up parser1.
Let α and P be the attributes representing the response probabil-
ity and the propagation matrix. Each of the tasks of the workflow,
which correspond to the leaves of the parse tree, has initial values
associated with its own α and P attributes. Hereafter we provide
the attribute rule that synthesizes the attributes for every node of
the parse tree given the values of the attributes associated with its
children nodes. The rules will be given for each grammar produc-
tion.

The attribute rules associated with production rules 1, 4, 5, 6, 7,
8 simply copy the values of the attributes in the child node corre-
sponding to the right-hand side nonterminal into the attributes as-
sociated with the parent node, corresponding to the left-hand side
nonterminal. The evaluation of the attributes for the other rules is
justified by the discussion in Section 3.

Rule 2 defines an empty statement list. By convention, we as-
sume that the synthesized value of the α attribute is 1 (i.e., it always
transfers control) and the value of the P attribute is the identity ma-
trix (i.e., it perfectly propagates every incoming error mode).

Rule 3 defines a non-empty statement list. The values of the
synthesized attributes are evaluated as follows:

stmtlist.P = stmt.P · stmtlist.P
stmtlist.α = stmt.α · stmtlist.α (15)

Rule 9 defines a sequence as a list of tasks. The values of the
synthesized attributes are evaluated as follows:

sequence.P = task.P · sequence.P
sequence.α = task.α · sequence.α (16)

A branch is composed by two statement lists, selected by a con-
dition c, whose value is a real number v such that 0 ≤ v ≤ 1.
Hence, the values of the attributes for rule 10 can be computed as:

branch.P = c.value · stmtlist1.P + (1− c.value) · stmtlist2.P
branch.α = c.value · stmtlist1.α+ (1− c.value) · stmtlist2.α

(17)
The attributes for the loop construct (rule 11) can be computed

as follows (where I represents the identity matrix):

9 1This is because the attriibute grammar only uses synthesized
attributes.

loop.P = (1− c.value) · (I − c.value · stmtlist.P)−1

loop.α = (1− c.value)/(1− c.value · stmtlist.α)
(18)

Fork-Join constructs, depending on how the designer intends to
solve nondeterminism, may assume different forms. For the sake of
simplicity here we show Case 2 m out of m which does not require
the use of complex data structures for the computation of attributes.
The other cases may be defined accordingly.

A fork construct is characterized as a list of threads (rule 12). Be-
sides P and α, forklist has an additional integer attribute m, which
represents the number of parallel threads. Forklist is defined by
rules 13 and 14. The evaluation of attributes for rule 13 is defined
as:

forklist.P = stmtlist.P
forklist.α = stmtlist.α
forklist.m = 1

(19)

The evaluation of attributes for rule 14 is defined as:

forklist.P = stmtlist.P + forklist.P
forklist.α = stmtlist.α · forklist.α
forklist.m = 1 + forklist.m

(20)

Then the fork construct (rule 12) synthesizes its attributes as:

fork.P = (1/forklist.m) · forklist.P
fork.α = forklist.α

(21)

An ANTLR2 specification of this grammar, as well as a Java
implementation of the compiler can be downloaded from http:
//home.dei.polimi.it/filieri/cbse2011.

6. AN EXAMPLE
In order to illustrate the proposed technique and to demonstrate

its effectiveness through a case study, in this section we apply it
to the evaluation of an example taken from [14], shown in Fig. 1.
The example deals with a composed Web service supporting travel
management, which offers several functionalities starting from the
travel location input, such as booking services and notifications to
users. The travel service workflow specification is shown in Fig. 1
through an activity diagram.

The workflow initially invokes a sequence of three services to
identifying the travel requirements. Then, two tasks are performed
in parallel: parking booking and the calling invited attendees, until
they confirm the invitation by answering to the call. After their
execution, the service starts arranging a meeting and subsequently
notifies the commitment for the travel to the user. In case the user
does not confirm the reception of the travel plan, the travel service
keeps sending her messages until the reception is confirmed.

According to the grammar expressed is Section 2, the code cor-
responding to the above example is reported in Table 3.

Before introducing the numerical values, we can focus on the
symbolic algebraic composition of tasks’ attributes. The fork-join
block here implements the m-out-of-m parallel pattern, because
completion of both the parallel branches is needed to accomplish
the request, and their output will be combined independently of
their arrival order.

By means of our compiler we obtain the following expression
for the response probability of the whole workflow W :

9 2ANTLR is a widely used language tool (http://www.antlr.org/)

findDuration

calculateTime

checkSchedule

bookParking

registerParcking

makeCall

getCallInformation

requestMeeting

sendSms

getSMSDelivery
Status

c1

c2

Figure 1: Example’s workflow.

αW = αfindDuration · αcalculateTime
·αcheckSchedule · αbookParking · αregisterParking
·αmakeCall · 1−c1

1−c1·αgetCallInformation

·αrequestMeeting · αsendSms
· 1−c2
1−c2·αgetSMSDeliveryStatus

(22)
By setting c1 = 0.333 and c2 = 0.6 and the same reliability

properties as in [14] we can obtain αW = 0.775, which is the
same response probability of [14].

With respect to [14], we can further analyze the response of the
system by looking at possible erroneous patterns contained in the
system’s response.

begin
findDuration; calculateTime; checkSchedule;
fork
bookParking; registerParking;

||
makeCall;
while c1 do
getCallInformation;

endwhile
||
join
requestMeeting; sendSms;
while c2 do
getSMSDeliveryStatus;

endwhile
end

Table 3: Source code of the example with the grammar of Sec-
tion 2.

For this example we only define two failure modes, inspired by
the treatment of [3], namely content and timing. Content failure
represents the generic presence of an error in the answer that can
derive, for example, from a logical error or from data corruption
over the communication channels. Timing failure refers to an ex-
cessive delay in providing the response. We assume that makeCall
and findDuration are managed through priority queues that make
requests with high cumulated delay to pass over the line. Hence,
these tasks are able to partially masquerade an incoming timing er-
ror.

The following formula 23 shows the propagation matrix for the
example workflow:

PW = PfindDuration ·PcalculateTime ·PcheckSchedule

· 1
2
· [PbookParking ·PregisterParking

+PmakeCall(1− c1) · (I − c1 ·PgetCallInformation)−1]
·PrequestMeeting ·PsendSms

·((1− c2) · (I − c2 ·PgetSMSDeliveryStatus)−1)
(23)

Let us consider that all the tasks have the same probability of
introducing a content failure p0,1 = 0.05, and the same probability
of introducing a timing failure equal to 0.04 (p0,2). Both of these
properties can be classified as failure probabilities, as for Section
2.2. Let us also assume that all the tasks propagate an incoming
content failure with probability 1 (p1,1), as well as they propagate
a timing failure (p2,2), with the exception of tasks makeCall and
findDuration, which can masquerade an incoming failure (robust-
ness, as in Section 2.2) mode with probability 0.75 (p2,0).

By computing the propagation matrix for the example workflow
PW , we obtain the following result:

PW =

 0.4957 0.3030 0.2013
0 1.0000 0

0.4654 0.2221 0.3125

Looking at the resulting propagation matrix, we can notice that

even if each single task has a relative low probability of introduc-
ing a content failure (0.05), composing them as in Figure 1 makes
the entire system have a probability of producing a content failure
equal to 0.303, which is considerable.

Considering the content failures, we can notice that, due to the
fact that no components are able to compensate an incoming con-
tent failure, the entire system inherits such a property, revealed by
the fact that pW1,1 = 1.

Additionally, thanks to the ability of makeCall and findDuration
to masquerade an incoming timing failure, the possible composi-
tion of the example system in a larger one would make the large
system benefit from the masquerading capability of PW , which is
indeed pW = 0.4654.

The closed-form expression of our reliability properties allows a
deeper knowledge concerning the system under analysis, and thus
further parametric analyses as well as sensitivity analyses could
also be performed.

7. RELATED WORK
To the best of our knowledge, the issue of stochastic analysis

of reliability for CB systems, taking into account multiple failure
modes and their propagation inside the system has been considered
only in [13]. Nevertheless there are a number of works strongly
related to this. In the following we present a selection of related
works to show on what our solution stands, and which is the starting
point of this research.

With regards to architecture-based software reliability analysis
several works have been proposed, some of which have been re-
viewed and classified in specific surveys [18, 24]. However, al-
beit error propagation is an important element in the chain that
leads to a system failure, all existing approaches ignore it. In these
approaches, the only considered parameters are the internal fail-
ure probability of each component and the interaction probabili-
ties, with the underlying assumption that any error that arises in a
component immediately manifest itself as an application failure, or
equivalently that it always propagates (i.e. with probability one) up
to the application outputs.

In the following, we shortly describe some of the works that
mostly influenced the proposed solution. One of the first approaches
to reliability that takes distance from debugging has been proposed
in 1980 [9]. The approach got named from user-oriented reliabil-
ity, which is defined as the probability that the program will give
the correct output with a typical set of input data from the execution
environment. The user-oriented approach is now the more widely
adopted and it justifies the adoption of probabilistic methods as
long as the system reliability depends on the probability that a fault
gets activated during a run. The reliability of a system is computed
as a function of both the reliability of its components and their fre-
quency distribution of utilization, where the system is described
by as a set of interacting modules which evolves as a stochastic
Markov Process and the usage frequencies can be obtained from
the structural description. In [36] the authors explore the possibil-
ity of transforming architecture expressed in three popular archi-
tectural styles into discrete Markov chains to be then analyzed by
means of the approach proposed in [9]. Parametrized specification
contracts, usage profile and reliability of required components as
constituent factors for reliability analysis have been presented in
[29]. Specifically, they consider components reliability as a combi-
nation of internal constant factors, such as reliability of the method
body code, and variable factors, such as the reliability of external
method calls. An approach for automatic reliability estimation in
the context of self-assembling service-oriented computing taking
into account relevant issues like compositionality and dependency
on external resources has been proposed in [19].

The first and most significant attempt in obtaining the closed-
form analytic solution of software architectures performance and
reliability quantities, applying an iterative reduction algorithm taken
and borrowed from the graph theory, is proposed in [4]. There are
also several adaptation of such algorithm in different contexts such
as, for example in discrete time Markov chain analysis [21]. In
workflow context, the first attempt in such direction has been per-
formed by Cardoso et al. [7, 8], which applied the reduction/aggregation
techniques to some of the workflow patterns identified in [32]. But
in the developed framework, failure modes propagation aspects have
not been taken into account.

The concept of error propagation probability as the probability
that an error, arising somewhere in the system, propagates through
components, possibly up to the user interfaces has been introduced
in [11]. The methodology of [11] assumes a single failure mode
and provides tools to analyze how sensible the system is with re-
spect to both failure and error propagation probability of each of its
components. In [23], the authors proposed a notion of error perme-
ability for modules as a basic characterization of modules’ attitude
to propagate errors. Also in this case, a single, non-halting fail-
ure mode is considered. Moreover, it is proposed a method for the
identification of which modules are more likely exposed to propa-
gated errors and which modules more likely produce severe conse-
quences on the global system, considering the propagation path of
their own failure. In [35, 34, 33] approaches based on fault injec-

tion to estimate the error propagation characteristics of a software
system during testing are presented. In the context of safety some
works exist dealing with multiple failure modes, see for example
[20]. However they don’t present any kind of stochastic analysis
but only an examination of their possible propagation patterns.

With regard to the estimation of the propagation path probabil-
ities, the basic information exploited by all the architecture-based
methodologies is the probability that component i directly interacts
with component j. At early design stages, where only models of
the system are available, this information can be derived from soft-
ware artifacts (e.g. UML interaction diagrams), possibly annotated
with probabilistic data about the possible execution and interac-
tion patterns [12]. A review and discussion of methodologies for
the interaction probability estimate can be found in [18]. A more
recent method has been discussed in [30], where a Hidden Markov
model is used to cope with the imperfect knowledge about the com-
ponent behavior. Once the interaction probabilities are known, the
probability of the different error propagation paths can be estimated
under the assumption that errors propagate through component in-
teractions.

An important advantage of architectural analysis of reliability
is the possibility of studying the sensitivity of the system reliabil-
ity to the reliability of each component, as said in the Introduc-
tion. Although this advantage is widely recognized (e.g., [16]), few
model-based approaches for computing the sensitivity of the sys-
tem reliability with respect to each component reliability have been
developed [9, 15]. A basic work for the sensitivity analysis of the
reliability with respect to some system parameter was presented in
[5], but it does not address specifically architectural issues. More-
over, all these models do not take into account the error propagation
attribute and different failure modes.

Multiple failure modes and their propagation probabilities have
been considered in [13]. This approach is based on DTMC models
and it can be applied at early stages of software design providing a
fine prediction model which can drive decisions about both archi-
tectural and behavioral aspects. The underlying model is also suit-
able for sensitivity analysis that establishes how much the global
system reliability (for each failure mode) depends upon each model
parameter.

The main contribution of our approach with regards to the litera-
ture is to provide an analytic technique for evaluating the propaga-
tion of different failure modes in component-based system and/or
composed services starting from their workflow description. One
of the main benefit of such technique is that it allows to obtain the
closed-form solution of the failure modes propagation, expressed
through a set of reliability quantities and measures specified in the
paper (Section 3). The technique adopted is based on the aggregation-
reduction approach well known in graph theory and also already
applied in software/workflow contexts as mentioned above [4, 7,
8] but never applied, to the best of our knowledge, in failure prop-
agation problems. With respect to [13], in this paper we provide
a formalization based on a reference grammar defining the main
workflow constructs, and a solution technique based on closed for-
mulae that can be solved by means of algebraic operations. Be-
sides, the entire analysis process is intrinsically compositional; it
recursively builds the reliability formulae for the whole structured
workflow by composing the formulae for its constituent patterns.

8. CONCLUSIONS
In this paper we presented a method for reliability analysis of

systems designed as workflow-based compositions of components,
where components are characterized by their failure profiles, which
take into account possible multiple failure modes. The proposed

approach is described as a syntax-driven procedure that synthe-
sizes a workflow’s failure profile from the given failure profiles of
the components. The method is viewed as a design-time aid that
can help software engineers reason about system’s reliability in the
early stage of development.

The technique proposed in this paper can be improved along sev-
eral directions. As we observed, parallel compositions can have a
variety of application-dependent semantics. We intend to explore
current industrial practices in order to identify practically relevant
composition patterns and provide a formal specification of their re-
liability attributes. It may be interesting to define an ad-hoc for-
mal specification language that can reduce the burden for designers.
We also plan to explore the impact of embedding time dependency
in the response probability function. This could help both to deal
with timeouts and to automatically synthesize join synchronization
points that depend on the parallel branches’ response time. Finally,
we are working on the implementation of our methodology on a
real testbed, to assess its effectiveness through a more comprehen-
sive set of real experiments.

9. ACKNOWLEDGEMENTS
Work partially supported by the Italian PRIN project D-ASAP

and by the European Commission, Programme IDEAS-ERC, Project
227977-SMScom.

10. REFERENCES
[1] A. Alves, A. Arkin, S. Askary, B. Bloch, F. Curbera,

Y. Goland, N. Kartha, Sterling, D. König, V. Mehta,
S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu. Web
services business process execution language version 2.0.
OASIS Committee Draft, May 2006.

[2] H. Ammar, D. Nassar, W. Abdelmoez, M. Shereshevsky, and
A. Mili. A framework for experimental error propagation
analysis of software architecture specifications. In Proc. of
International Symposium on Software Reliability
Engineering. IEEE, 2002.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr.
Basic concepts and taxonomy of dependable and secure
computing. IEEE Trans. Dependable Secur. Comput.,
1:11–33, January 2004.

[4] B. Beizer. Micro-Analysis of Computer System Performance.
John Wiley & Sons, Inc., New York, NY, USA, 1978.

[5] J. T. Blake, A. L. Reibman, and K. S. Trivedi. Sensitivity
analysis of reliability and performability measures for
multiprocessor systems. In SIGMETRICS, pages 177–186,
1988.

[6] C. Böhm and G. Jacopini. Flow diagrams, turing machines
and languages with only two formation rules. Commun.
ACM, 9:366–371, May 1966.

[7] A. Cardoso. Quality of Service and Semantic Composition of
Workflows. PhD thesis, Graduate School of the University of
Georgia, Athens, Georgia, August 2002.

[8] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut.
Web semantics: Science, services and agents on the world
wide web; quality of service for workflows and web service
processes. Journal of Web Semantics, Elsevier,
1(3):281–308, 2004.

[9] R. C. Cheung. A user-oriented software reliability model.
IEEE Trans. Softw. Eng., 6(2):118–125, 1980.

[10] E. Cinlar. Introduction to stochastic processes. Englewood
Cliffs, 1975.

[11] V. Cortellessa and V. Grassi. A modeling approach to
analyze the impact of error propagation on reliability of
component-based systems. LNCS, 4608:140, 2007.

[12] V. Cortellessa, H. Singh, and B. Cukic. Early reliability
assessment of uml based software models. In Workshop on
Software and Performance, pages 302–309, 2002.

[13] A. Filieri, C. Ghezzi, V. Grassi, and R. Mirandola. Reliability
analysis of component-based systems with multiple failure
modes. In L. Grunske, R. Reussner, and F. Plasil, editors,
Component-Based Software Engineering, volume 6092 of
Lecture Notes in Computer Science, pages 1–20. Springer
Berlin / Heidelberg, 2010. 10.1007/978-3-642-13238-4_1.

[14] S. Gallotti, C. Ghezzi, R. Mirandola, and G. Tamburrelli.
Quality prediction of service compositions through
probabilistic model checking. In S. Becker, F. Plasil, and
R. Reussner, editors, Quality of Software Architectures.
Models and Architectures, volume 5281 of Lecture Notes in
Computer Science, pages 119–134. Springer Berlin /
Heidelberg, 2008. 10.1007/978-3-540-87879-7_8.

[15] S. S. Gokhale and K. S. Trivedi. Reliability prediction and
sensitivity analysis based on software architecture. In ISSRE,
pages 64–78. IEEE Computer Society, 2002.

[16] S. S. Gokhale, W. E. Wong, J. R. Horgan, and K. S. Trivedi.
An analytical approach to architecture-based software
performance and reliability prediction. Perform. Eval., 58(4),
2004.

[17] K. Goseva-Popstojanova, A. Mathur, and K. Trivedi.
Comparison of architecture-based software reliability
models. In Software Reliability Engineering, 2001. ISSRE
2001. Proceedings. 12th International Symposium on, pages
22 – 31, 2001.

[18] K. Goseva-Popstojanova and K. S. Trivedi.
Architecture-based approach to reliability assessment of
software systems. Perform. Eval., 45(2-3):179–204, 2001.

[19] V. Grassi. Architecture-based reliability prediction for
service-oriented computing. In R. de Lemos, C. Gacek, and
A. Romanovsky, editors, Architecting Dependable Systems
III, volume 3549 of Lecture Notes in Computer Science,
pages 279–299. Springer Berlin / Heidelberg, 2005.
10.1007/11556169_13.

[20] L. Grunske and J. Han. A comparative study into
architecture-based safety evaluation methodologies using
aadl’s error annex and failure propagation models. In HASE,
pages 283–292. IEEE Computer Society, 2008.

[21] E. Hahn, H. Hermanns, and L. Zhang. Probabilistic
reachability for parametric markov models. In C. Pasareanu,
editor, Model Checking Software, volume 5578 of Lecture
Notes in Computer Science, pages 88–106. Springer Berlin /
Heidelberg, 2009. 10.1007/978-3-642-02652-2_10.

[22] H. Hansson and B. Jonsson. A logic for reasoning about time
and reliability. Formal aspects of computing, 6(5):512–535,
1994.

[23] M. Hiller, A. Jhumka, and N. Suri. Epic: profiling the
propagation and effect of data errors in software. Computers,
IEEE Transactions on, 53(5):512 – 530, May 2004.

[24] A. Immonen and E. Niemel. Survey of reliability and
availability prediction methods from the viewpoint of
software architecture. Software and Systems Modeling,
7(1):49–65, 2008.

[25] A. Immonen and E. NiemelŁ. Survey of reliability and
availability prediction methods from the viewpoint of

software architecture. Software and Systems Modeling,
7:49–65, 2008.

[26] D. E. Knuth. Correction: Semantics of context-free
languages. Mathematical Systems Theory, 5(1):95–96, 1971.

[27] R. K. L. Ko. A computer scientist’s introductory guide to
business process management (bpm). Crossroads,
15:4:11–4:18, June 2009.

[28] J. Paakki. Attribute grammar paradigms - a high-level
methodology in language implementation. ACM Comput.
Surv., 27(2):196–255, 1995.

[29] R. Reussner, H. W. Schmidt, and I. Poernomo. Reliability
prediction for component-based software architectures.
Journal of Systems and Software, 66(3):241–252, 2003.

[30] R. Roshandel. Calculating architectural reliability via
modeling and analysis. In ICSE, pages 69–71. IEEE
Computer Society, 2004.

[31] W. M. C. Specification. Workflow Management Coalition
Terminology and Glossary (Document No.
WFMC-TC-1011). Number 3.0. Workflow Management
Coalition Specification,
http://www.wfmc.org/standards/docs/TC-
1011_term_glossary_v3.pdf,
1999.

[32] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and
A. Barros. Workflow patterns. Distributed and Parallel
Databases, 14:5–51, 2003. 10.1023/A:1022883727209.

[33] J. M. Voas. Pie: A dynamic failure-based technique. IEEE
Trans. Software Eng., 18(8):717–727, 1992.

[34] J. M. Voas. Error propagation analysis for cots systems.
Computing and Control Engineering Journal, 8(6):269–272,
1997.

[35] W. Abdelmoez et al. Error propagation in software
architectures. In METRICS ’04, pages 384–393, Washington,
DC, USA, 2004. IEEE Computer Society.

[36] W.-L. Wang, Y. Wu, and M.-H. Chen. An architecture-based
software reliability model. Pacific Rim International
Symposium on Dependable Computing, IEEE, 0:143, 1999.

[37] S. White. Process modeling notations and workflow patterns,
chapter Workflow Handbook, pages 265–294. Future
strategies inc. lighthouse point, fl, usa., 2004. edition, 2004.

