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ABSTRACT
Unpredictable changes continuously affect software systems
and may have a severe impact on their quality of service, po-
tentially jeopardizing the system’s ability to meet the desired
requirements. Changes may occur in critical components of
the system, clients’ operational profiles, requirements, or de-
ployment environments.
The adoption of software models and model checking tech-

niques at run time may support automatic reasoning about
such changes, detect harmful configurations, and potentially
enable appropriate (self-)reactions. However, traditional model
checking techniques and tools may not be simply applied as
they are at run time, since they hardly meet the constraints
imposed by on-the-fly analysis, in terms of execution time
and memory occupation.
This paper precisely addresses this issue and focuses on

reliability models, given in terms of Discrete Time Markov
Chains, and probabilistic model checking. It develops a
mathematical framework for run-time probabilistic model
checking that, given a reliability model and a set of require-
ments, statically generates a set of expressions, which can
be efficiently used at run-time to verify system requirements.
An experimental comparison of our approach with existing
probabilistic model checkers shows its practical applicability
in run-time verification.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model Checking, Reliability ; C.4 [Computer Sys-
tems Organization]: Performance of Systems—Modeling
techniques, Performance attributes

General Terms
Probabilistic Model Checking, Reliability

Keywords
Discrete Time Markov Chains, Run-Time Model Checking
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1. INTRODUCTION
Often software systems are designed, developed and im-

plemented to operate in a completely known and immutable
environment with stable requirements and unvaried opera-
tional profiles. In this setting, each change is unexpected and
may jeopardize the ability of the system to meet its require-
ments. Whenever a software has to be changed, a complete
maintenance lifecycle–design, development, and deployment
of a new version of the system–has to be planned. In this
scenario changes are considered harmful and lead to costly
maintenance activities and unsatisfactory time-to-market.

Increasingly, however, changes occur very frequently and
constitute one of the dominant factors of current software
systems. Today’s software is often built through composi-
tion of components operated by independent organizations
(e.g., Web services integrated in a larger system), which may
evolve unpredictably; clients’ operational profiles and de-
ployment environments may also change over time. As a
consequence, software engineers are increasingly required to
design software as an adaptive system, which automatically
detects and reacts to changes.

Many current research proposals describe methodologies
and techniques to design adaptive systems. In this paper,
we focus on software systems that try to adapt themselves
to keep satisfying reliability requirements in the presence
of changes. The most promising solutions build on top
of two complementary techniques: monitoring and models
(e.g., [12, 28, 29]). The former aims at interpreting data
extracted at run time from instances of the system. The
data collected by the monitor are analyzed to continuously
update the parameters of the model (e.g., failure probabil-
ity of an external service), to keep the model consistent over
time with the changing behavior of the environment. The
updated model may be analyzed by model checking [2, 7]
tools, which verify the compliance between the current be-
havior of the system and the desired requirements. Because
of our focus on reliability, the models we consider here are
Discrete Time Markov Chains (DTMCs) [14].

Unfortunately, traditional model checking techniques and
tools are conceived for design-time use and can hardly sat-
isfy the execution time constraints normally imposed by run-
time analyses because of the well known problem of state ex-
plosion, which occurs in analyzing the model. In particular,
the use of model checking tools at run time leads to unsatis-
factory execution time. Indeed, traditional model checking
techniques take as input a model of the system and a prop-
erty expressed in an appropriate formalism (i.e., the require-
ment) and verify if the former is compliant with respect to
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Figure 1: Run-Time Model Checking Techniques

the latter (i.e., the requirement is met by the model). As pre-
viously introduced, the monitoring continuously updates the
system model at run time and the model checking process is
periodically activated. This run-time procedure is compu-
tationally expensive and requires the exhaustive exploration
of the model’s state space—which may be very large—and
the analysis of the property—which may be arbitrarily com-
plex. Figure 1(a) summarizes such approach. The details
concerning the complexity of traditional probabilistic model
checking can be found in [2, 10, 23].
This paper focuses on efficiently evaluating the satisfac-

tion of reliability requirements at run time. The key con-
cept of the proposed solution relies on separating the model-
checking activity in two distinct steps, executed at design
time and run time, respectively. We refer to the design-time
step as pre-computation and to the run-time step as veri-
fication. The pre-computation step takes as input: (1) the
model of the system as a DTMC, (2) a set of transition vari-
ables, and (3) the reliability requirements of the system. The
transition variables are the parameters of the model whose
value becomes known only at run time, and may change over
time. For example, a transition may connect a state mod-
eling a service invocation to a failure state, and the tran-
sition variable is a literal representing the changing value
of the service’s failure rate. The output produced by the
pre-computation step is a set of symbolic expressions which
represent satisfaction of the requirements. The verification
step performed at run time simply evaluates the formulae
by replacing the variables with the real values gathered by
monitoring the system. In the example, the monitor would
yield the real value of the failure rate of the service and
the formulae representing the requirements would evaluate
to either true or false (in case of a violation). Figure 1(b)
describes the two steps involved in the proposed approach.
The main advantage of our approach relies on shifting the

cost of model analysis at design time. The (computationally
expensive) design-time transformation of reliability proper-
ties into symbolic formulae reduces run-time model check-
ing to substituting variables with values and evaluating the
expression, which is computationally inexpensive and does
not require model exploration. The rationale behind the ap-
proach is that we are willing to pay for an expensive trans-

formation step at design time if run-time analysis becomes
efficient, and amenable to on-line processing. We measured
the speed up obtained by our run-time model checking ap-
proach with respect to existing probabilistic model checkers:
PRISM [18] and MRMC [21] pointing out advantages and
threats to validity of both the approaches. As shown in Sec-
tion 4, our method outperforms existing probabilistic model
checkers under the assumption that potential changes can be
anticipated and the number of variable transitions is small.
In the extreme case, one may of course assume all transitions
to be variable, but this would make our approach impracti-
cal.

The rest of the paper is organized as follows: Section 2
provides the necessary background. Section 3 describes the
proposed approach. Section 4 illustrates the simulations per-
formed through a tool we implemented and reports the ex-
perimental results we obtained. Section 5 discusses related
work. Section 6 concludes the paper describing some current
limitations of our approach and future work.

2. GROUNDING THE PROBLEM
We assume the system under development to be mod-

eled as a Discrete Time Markov Chain (DTMC). DTMCs
a widely accepted formalism to model reliability of compo-
nent (service)-based systems. In particular, they proved to
be useful for an early assessment or prediction of reliability
[19]. The adoption of DTMCs implies that the modeled sys-
tem meets, with some tolerable approximation, the Markov
property–described later on in Section 2.1. This issue can
be easily verified as discussed in [6, 14].

As for most design approaches based on DTMCs (con-
sider for example [14]), in our work we assume that the
model depscribes behaviors that depend on interaction pro-
file and failure probabilities, which are used to label DTMC
transitions. These values may be hard to predict at design
time. In practice, a software designer may rely on estimates
for interaction and failure probabilities, gathered by running
instances of similar systems, as discussed in [12]. Some of
these values, in addition, may change over time after the
system has been developed and deployed.

We make the assumption that, through careful design-
time analysis, we can restrict run-time variability to a subset
of environment parameters. Precisely, we assume that (1) we
can anticipate the variable transitions in the model and (2)
they are a small fraction of the total number of transitions.
These assumptions are valid in many practical cases. If they
do not hold, our approach may still be applied, but simply
would not yield its expected benefits in terms of speed-up
of run-time verification.

In the next section we briefly introduce DTMCs. After-
wards, we describe PCTL [2], a probabilistic temporal logic,
adopted here to express reliability requirements.

2.1 Discrete Time Markov Chains
DTMCs are defined as state-transition systems augmented

with probabilities. States represent possible configurations
of the system. Transitions among states occur at discrete
time and have an associated probability. DTMCs are dis-
crete stochastic processes with the Markov property, accord-
ing to which the probability distribution of future states de-
pend only upon the current state.

Formally, a (labeled) DTMC is tuple (S, S0, P, L) where



• S is a finite set of states

• S0 ⊆ S is a set of initial states

• P : S×S → [0, 1] is a stochastic matrix (
∑

s′∈S P (s, s′) =
1 ∀s ∈ S). An element P (si, sj) represents the proba-
bility that the next state of the process will be sj given
that the current state is si.

• L : S → 2AP is a labeling function which assigns to
each state the set of Atomic Propositions which are
true in that state.

In this paper we will implicitly extend this definition by
also allowing transitions to be labeled with variables (in the
range 0..1) instead of constants. A state s ∈ S is said to be
an absorbing state if P (s, s) = 1. If a DTMC contains at
least one absorbing state, the DTMC itself is said to be an
absorbing DTMC.
In an absorbing DTMC with r absorbing states and t tran-

sient states, rows and columns of the transition matrix P can
be reordered such that P is in the following canonical form:

P =

(
Q R
0 I

)
where I is an r by r identity matrix, 0 is an r by t zero

matrix, R is a nonzero t by r matrix and Q is a t by t matrix.
Consider now two distinct transient states si and sj . The

probability of moving from si to sj in exactly 2 steps is∑
sx∈S P (si, sx) · P (sx, sj). Generalizing, for a k-steps path

and recalling the definition of matrix product, it follows that
the probability of moving from any transient state si to any
other transient state sj in exactly k steps corresponds to the
entry (si, sj) of the matrix Qk. As a natural generalization,
we can define Q0 (representing the probability of moving
from each state si to sj in 0 steps) as the identity t by t
matrix, whose elements are 1 iff si = sj [15].
Due to the fact that R must be a nonzero matrix, and P

is a stochastic matrix, Q has uniform-norm strictly less than
1, thus Qn → 0 as n → ∞, which implies that eventually
the process will be absorbed with probability 1.
In the simplest model for reliability analysis, the DTMC

will have two absorbing states, representing the correct ac-
complishment of the task and the task’s failure, respectively.
The use of absorbing states is commonly extended to mod-
eling different failure conditions. For example, different fail-
ure states may be associated with the invocation of different
external services. Once the model is in place, we may be
interested in estimating the probability of reaching an ab-
sorbing state or in stating the property that the probability
of reaching an absorbing failure state should be less than a
certain threshold. In the next section we discuss how these
and other interesting properties of systems modeled by a
DTMC can be expresses and how they can be evaluated.
Let us consider for example the DTMC in Figure 2, which

represents a system sending authenticated messages over the
network. States 5, 6, and 7 are absorbing states; states 6 and
7 represent failures associated respectively to the authenti-
cation and to message sending. We use variables as transi-
tion labels to indicate that the value of the corresponding
probability is unknown, and may change over time.
In matrix form, the same DTMC would be characterized
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Figure 2: DTMC Example.

by the following matrices Q and R:

Q =


0 1 0 0 0
0 0 y 0 1− x− y
0 0 0 1− z 0
0 0 0.15 0 0.85
0 0 0 0 0



R =


0 0 0
0 x 0
0 0 z
0 0 0
1 0 0


This is a toy example that we use to introduce the proposed
approach. However, the concepts described hereafter apply
to real systems which might have thousands of states and
failures, as we discuss in Section 4.

2.2 PCTL and Reliability Properties
Formal languages to express properties of systems mod-

eled through DTMCs have been studied in the past and
several proposals are supported by model checkers to prove
that a model satisfies a given property. In this paper, we
focus on PCTL [2], a logic which can be used to express a
number of interesting reliability properties.

PCTL is a logic language inspired by CTL [2]. In place of
the existential and universal quantification of CTL, PCTL
provides the probabilistic operator P▷◁p(·), where p ∈ [0, 1]
is a probability bound and ▷◁∈ {≤, <,≥, >}.

PCTL is defined by the following syntax:

Φ ::= true | a | Φ ∧ Φ | ¬ Φ | P▷◁p (φ)

φ ::= X Φ | Φ U Φ | Φ U≤t Φ

Formulae Φ are named state formulae and can be evalu-
ated over a boolean domain (true, false) in each state. For-
mulae ψ are named path formulae and describe a pattern
over the set of all possible paths originating in the state
where they are evaluated.

The satisfaction relation for PCTL is defined for a state s
as:

s |= true

s |= a iff a ∈ L(s)

s |= ¬Φ iff s ⊭ Φ

s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= P▷◁p(ψ) iff Pr(s |= ψ) ▷◁ p

A formal definition of how to compute Pr(s |= ψ) is pre-
sented in [2]. The intuition is that its value corresponds to
the fraction of paths originating in s and satisfying ψ over
the entire set of paths originating in s. The satisfaction rela-
tion for a path formula with respect to a path π originating
in s (π[0] = s) is defined as:



π |= XΦ iff π[1] |= Φ

π |= ΦUΨ iff ∃j ≥ 0.(π[j] |= Ψ ∧ (∀0 ≤ k < j.π[k] |= Φ))

π |= ΦU≤tΨ iff ∃0 ≤ j ≤ t.(π[j] |= Ψ ∧ (∀0 ≤ k < j.π[k] |= Φ))

PCTL is an expressive language that allows many interest-
ing reliability-related properties to be specified. A taxonomy
of all possible reliability properties is out of the scope of this
paper. The most important case is a reachability property.
A reachability property states that a state where a certain
characteristic property holds is eventually reached from a
given initial state. In most cases, the state to be reached is
an absorbing state. Such state may represent a failure state,
in which a transaction executed by the system modeled by
the DTMC eventually terminates, or a success state. Reach-
ability properties are expressed as P▷◁p(true U Φ)1, which
expresses the fact that the probability of reaching any state
satisfying Φ has to be in the interval defined by constraint
▷◁ p. Φ is assumed to be a simple state formula that does
not include any nested path formula. In most cases, it just
corresponds to the atomic proposition that is true in an ab-
sorbing state of the DTMC. In the case of a failure state, the
probability bound is expressed as ≤ x, where x represents
the upper bound for the failure probability; for a success
state it would be instead expressed as ≥ x, where x is the
lower bound for success.
PCTL is an expressive language through which more com-

plex properties than plain reachability may be expressed.
Such properties would be typically domain-dependent, and
their definition is delegated to system designers. For exam-
ple, referring to the example in Figure 2, we express the
following reliability requirements:

• R1:“The probability that a MsgFail failure happens is
lower than 0.001”

• R2:“The probability of successfully sending at least one
message for a logged in user before logging out is greater
than 0.001”

• R3:“The probability of successfully logging in and im-
mediately logging out is greater than 0.001”

• R4:“The probability of sending at least 2 messages be-
fore logging out is greater than or equal to 0.001”

These requirements can be translated into PCTL as shown
in Table 1. Notice that R1 is an example of reachability
property. Also notice that these requirements have different
sets of initial states: R1, R3, and R4 must be evaluated
starting from state 0 (i.e., S0 = {0}) while R2 must be
evaluated starting from state 1.
In the next section we present a mathematical procedure

to compute a (symbolic) formula (i.e., an analytic expres-
sion) for the properties we want to verify at run time. We
start by analyzing reachability properties and then we pro-
gressively show how to cover all of PCTL formulae.

3. THE APPROACH
In this section we illustrate how PCTL formulae may be

pre-computed at design time. Pre-computation produces

1Note that this is often expressed as P▷◁pFΦ, using the fi-
nally operator.

Table 1: Requirements translation in PCTL.
Req. PCTL
R1 P≤0.001(true U s = 7) = P≤0.001(F s = 7)
R2 P≥0.001(1 ≤ s ≤ 2 U s = 3)
R3 P≥0.001(X s = 4)
R4 P≥0.001(1 ≤ s ≤ 3 U≤5 s = 4)

a formula for each PCTL property. The formula is an ana-
lytic expression that contains variables which become known
at run-time. Variables correspond to transition probabili-
ties that are unknown (or uncertain) at design time. Note
that there must be at least two variable transitions exiting
a state, since the sum of probabilities must be 1. In general,
we may assume that if there is a variability, all the transi-
tions exiting a node are variable. We refer to such states
as variable states. We start this section by discussing how
reachability formulae may be pre-computed. We then dis-
cuss how to extend our approach to cover the entire PCTL.

3.1 Reachability Formulae
The most commonly studied property for reliability anal-

ysis is the probability of reaching a certain state, which typ-
ically represents the success of the system or some failure
condition. Both success and failure are modeled by absorb-
ing states. The reachability formula in this case has the
following form: P▷◁pFl, where l is the label of the target
absorbing state. Let us start our discussion by showing how
to pre-compute at design time a reachability formula for an
absorbing state of a DTMC.

For an absorbing DTMC, the matrix I−Q has an inverse
N and N = I+Q+Q2+ ... =

∑∞
i=0Q

i [15]. The entry nij of
N represents the expected number of times the Markov chain
reaches state sj , given that it started from state si, before
getting absorbed. Instead, qij represents the probability of
moving from the transient state si to the transient state sj
in exactly one step.

Given that Qn → 0 when n→ ∞ (as discussed in Section
2.1), the process will always be absorbed with probability 1
after a large enough number of steps, no matter which state
it started in. Hence, our interest is to compute the prob-
ability distribution over the set of absorbing states. This
distribution can be computed in matrix form as:

B = N ×R

where rik is the probability of being absorbed in state sk
given that the process started in state si.
B is a t × r matrix and it can be used to evaluate the

probability of each termination condition starting from any
DTMC state as an initial state. In particular the element bij
of the matrix B represents the probability of being absorbed
into state sj given that the execution started in state si.

The design-time computation of an entry bij in general
can only be done symbolically, since variable states may be
traversed to reach state sj . Let us evaluate the complex-
ity of such computation. Inverting matrix I − Q by means
of the Gauss-Jordan elimination algorithm [1] requires t3

operations. The computation of the entry bij once N has
been computed requires tmore products, thus the total com-
plexity is t3 + t algebraic operations on polynomials. The
computation could be further optimized by exploiting the



sparsity of I − Q. Notice that the symbolic nature of the
computation makes the design-time phase quite costly [16].
The complexity can be significantly reduced if the number

of variable components c is small and the matrix describing
the DTMC is sparse, as very frequently happens in practice.
Let W = I − Q. The elements of its inverse N are defined
as follows:

nij =
1

det(W )
· αji(W )

where αji(W ) is the cofactor of the element wji. Thus:

bik =
∑

x∈0..t−1

nix · rxj =
1

det(W )

∑
x∈0..t−1

αxi(W ) · rxj

Computing bik requires the computation of t determinants
of square matrices with size t − 1. Let τ be the average
number of outgoing transitions from each state (τ << n by
assumption). Each of the determinants can be computed by
means of Laplace expansion. Precisely, by expanding first
the c rows representing the variable states (each has τ sym-
bolic terms), we need to compute at most τ c determinants
and then linearly combine them. Each submatrix of size
t− c does not contain any variable symbol, by construction,
thus its determinant can be computed with (t − c)3 oper-
ations among constant numbers (LU-decomposition), thus
much faster than the corresponding ones among polynomi-
als. The final complexity is thus:

τ c · (t− c)3 ∼ τ c · t3 (1)

which significantly reduces the original complexity and makes
the design-time pre-computation of reachability properties
feasible in a reasonable time, even for large values of t.
As a point of comparison, the computation of reachabil-

ity properties performed by probabilistic model-checkers is
based on the solution of a system of n equations in n vari-
ables [2], which has, in a sequential computational model, a
complexity equal to n3 [4].
Summing up, we discussed the computation of proper-

ties in the form P▷◁p(Fsk), where sk is an absorbing state,
starting in any initial transient state of the system2. With
this procedure, it is possible to obtain closed formulae for a
number of interesting reliability properties.
For example, evaluating R1 on our example system, that

is the probability of reaching the state MsgFail failure in any
number of execution steps corresponds to evaluating b07 as:

R1:
(yz)

(0.85 + 0.15z)
≤ 0.001

Let us now consider the computation of the probability
of successfully reaching a certain state sj that is not an ab-
sorbing state3. The quantity we are interested in is fij , the
probability of ever making a transition into state sj given
that the process started in state si (si can be any transient
state taken as initial state). Formally, let fn

ij represent the
probability of moving from the transient state si to the tran-
sient state sj for the first time in exactly n steps:

2Actually we discussed the computation of the probability
associated with the property, to which the constraint ▷◁ p
has to be applied.
3Our mathematical description follows the treatment in [27],
to which we direct the reader for a more detailed discussion.

{
f0
ij = 0 ∀i ̸= j; f0

ij = 1 ∀i = j
fn
ij = Pr{Xn = sj ∧Xk ̸= sj ∀ 1 ≤ k ≤ n− 1|X0 = si}

where Xk is the state of the system at execution step k.
Then:

fij =

∞∑
n=0

fn
ij

It is possible to compute the value fij from the matrix N
by conditioning the entry nij–the expected number of times
the DTMC on whether state sj is ever entered [27]:

nij = njjfij

thus:

fij =
nij

njj
=
αji(W )

αjj(W )

Hence, computing the probability of moving from a transient
state si to a transient state sj is reduced to the computation
of the determinants of two matrices with size t − 1. Again,
by the fact that only a few rows of N are symbolic (i.e.
only a few states are variable), the actual complexity of the
computation is approximately the same as in expression 1.

The approach we described so far supports the definition
of properties which represent requirements that speak about
“the probability of reaching state sj without reaching any fail-
ure” or“the probability of a successfully performing a certain
operation or service”. In our example, the probability of
reaching the Logout state 7 after any number of steps4 cor-
responds to the entry f04 = 0.85−0.85x+0.15z−0.15xz−yz

0.85+0.15z
.

Once again, we stress that our approach is especially prac-
tical under the assumption that the number of parameters of
the system is reasonably small. Design-time computational
effort could be further reduced by adopting state-of-the-art
(parallel) matrix calculus algorithms [20].

3.2 Extending to Full PCTL
In the previous section we described a solution limited to

reachability properties. Even though reachability represents
the most widely adopted pattern for reliability analysis, it
does not cover all the requirements that engineers need to
express for real-world applications; consider for example re-
quirements R2–R4 of our example. In this section, we in-
crementally extend the approach to handle all of PCTL.

Notice that reachability properties correspond to restricted
until formulae P▷◁p(Φ1 ∪ Φ2) where: (1) Φ1 corresponds to
true (i.e., Φ1 is satisfied in any state) and (2) Φ2 does not
include any nested path formula (we refer to this subset of
PCTL which does not allow the nesting of path operators
as the flat subset). Sections 3.2.1 and 3.2.2 discuss our ap-
proach for each PCTL operator in the case of flat formulae.
Section 3.2.3 then describes how to extend the approach to
nested formulae, thus covering the entire PCTL.

3.2.1 Flat Until formulae
The procedure to support requirements in the (flat) form

Φ1 ∪Φ2 relies on: (1) reducing them to reachability proper-
ties and (2) applying the technique described in sect. 3.1.

4Note that this probability is not what is needed for R3,
which in turn requires to reach logout in a single step. See
Section 3.2.2.



The reduction procedure starts with the construction of a
DTMC D̄ defined as follows. We refer to the set of states of
D̄ as SD̄. The set is the union of three non-overlapping sub-
sets, Sgoal, S¬goal and Stransient, respectively defined as: (1)
all the absorbing states of the original DTMC in which Φ2 is
true plus an additional auxiliary state sgoal, (2) all the ab-
sorbing states of the original DTMC in which Φ2 is false plus
an additional auxiliary state s¬goal, and (3) all the remaining
states of the original DTMC: Stransient = S/{Sgoal∪S¬goal}.
The following algorithm defines the transitions of D̄ starting
from the transitions of the original DTMC:

1. delete all the outgoing transitions from all the transient
states of the original DTMC in which ¬(Φ1∨Φ2) is true
and add a single outgoing transition directed to s¬goal

with a labelling probability equal to 1.

2. attach to all the transient states of the original DTMC
where Φ2 is true a single outgoing transition directed
to sgoal with a labelling probability equal to 1.

Recalling our example of Figure 2 and considering require-
ment R2 we have that:

Sgoal = {sgoal}
S¬goal = {s¬goal, 5, 6, 7}
Stransient = {0, 1, 2, 3, 4}

Figure 3 illustrates the resulting DTMC D̄.

Figure 3: Resulting DTMC D̄.

Goal states in Sgoal represent the satisfaction of the for-
mula. In fact, all the path formulae in the form Φ1 U Φ2

are satisfied in all the states in which Φ2 is true and those
states, in D̄, are directly connected to goal states. More-
over, the predecessor states on any path that leads to a
state where Φ2 is true are such that Φ2 is false (otherwise
from there we would reach Sgoal with probability 1) and Φ1

is true (otherwise it would have been deleted by step 1 of
our algorithm). Conversely, states in S¬goal can be reached
directly, and with probability 1, by all the states in which
the formula is not satisfied, i.e. ¬(Φ1 ∨ Φ2) is true. Hence,
we reduced the evaluation of a general Until property to a
reachability property such as: P▷◁p(F s ∈ Sgoal).
For example, evaluating R2 on the original DTMC is

equivalent to evaluating the reachability property P▷◁p(F
s ∈ Sgoal) over D̄, which corresponds to the entry b18, where
8 is the index of state sgoal, computed over the transition
matrix of D̄:

R2: y − yz ≥ 0.001

3.2.2 Flat Next and Bounded Until formulae

Let us consider again the flat subset of PCTL and let us
focus on the pre-computation of formulae that use the Next
and the Bounded Until operators, which require analyzing
paths of finite length.

The set of paths to be considered in order to evaluate
the formula XΦ1 in state si is composed by all 1-step long
paths exiting si. The maximum size of such set is n (i.e., the
number of states), which is also the worst-case complexity
of our design-time pre-computation procedure. The proba-
bility that si |= XΦ1 is:

Pr(XΦ1) =
∑

sj |=(Φ1)

pij

For example, in order to evaluate R3, we first notice that
s = 4 is satisfied only in state Logout. Thus, the probability
of satisfying s = 4 in exactly one step from state 1 (Login)
is expressed by the formula 1− x− y, and R3 becomes

R3: 1− x− y ≥ 0.001

A similar procedure applies to the Bounded Until. A path
originating in si, which satisfies the formula Φ1 U

≤v Φ2, at
a certain step k ≤ v satisfies Φ2 and for all the states l < k
satisfies Φ1. We therefore need to consider all the paths with
length k ≤ v.

If we exploit the DTMC D̄ built as explained in the previ-
ous section, all these paths correspond to paths of D̄ whose
length is equal to exactly v + 1 and which reach a transient
state satisfying Φ2 in v steps and then end in any of the
states in Sgoal. Indeed, if a path reaches an absorbing state
after k steps, it remains in that state with probability equal
to 1, thus the tail of the path will be composed of v+ 1− k
self-transitions with probability 1 exiting a state in Sgoal.

The probability of moving in v + 1 steps from a state si
to a state sj corresponds to the entry pv+1

ij of the (v+1)-th

power of the transition matrix P of the DTMC D̄. Hence:

Pr(Φ1 U
≤v Φ2) =

∑
sj∈Sgoal

pv+1
ij

In our example, let us consider R4. After constructing
D̄, it is possible to compute the probability of reaching any
of the goal states from the Login state. In this case there is
only one goal state sgoal because the formula s = 4 is false
in any other absorbing state. Thus, we need to compute the
entry p618, where 8 is the index of sgoal, and such a value is:

R4: 1− x− y + 0.85y(1− z) + 0.1275y(1− z)2 ≥ 0.001

To assess design-time complexity in this case, we should
consider that we need to compute the matrix P v+1. Since
the complexity of a matrix dot product is approximately n3

[8], a non-optimized algorithm has complexity vn3.
At runtime, both Next and Bounded Until only require to

evaluate a polynomial, by substituting values to transition
variables, as in the case of reachability formulae.

3.2.3 Handling Nested Path Formulae
We have shown that for all kinds of flat PCTL formulae it

is possible to generate a corresponding symbolic expression
at design time. In the case of nested path operators, that is
for formulae P▷◁p(ψ) where at least one subformula of ψ is
again a path formula, some information needed to compute
the expression might be unavailable at design time.

For example, the actual violation of requirements R1-R4
will be known only at run time, when parameter values will



be available. If any of those formulae is, for example, part of
the right-hand operand of an Until formula, the construction
of the reduced DTMC D̄ must be delayed to run time, when
the set of states which satisfies Φ2 (and Φ1) becomes known
from the values bound to the parameters. Thus, in general,
to evaluate a formula with nested P▷◁p(·) operators, we need
to know in which states its subformulae are satisfied, and the
definition of this set may depend on parameter values. The
same observation can be applied recursively to subformulae
of a subformula, until we reach a flat formula, for which we
can immediately construct an equivalent expression.
To develop a solution, we need a way to delay the evalua-

tion of a formula to run time, when all of its subformulae will
be already evaluated providing the missing knowledge. In
order to support this process, we add some extra parameters
at design time, which will account for the lack of informa-
tion concerning subformulae’s satisfaction. Those parame-
ters constitute a scaffolding introduced at design time, which
is removed as subformulae are evaluated.
Let us first focus on Until formulae, like Φ1UΦ2. Re-

calling the procedure in Section 3.2.1, the construction of
D̄ requires two basic operations (besides the introduction
of absorbing states sgoal and s¬goal): (1) replacing all out-
going transitions from states where ¬(Φ1 ∨ Φ2) holds by a
single one toward s¬goal, and (2) replacing all outgoing tran-
sitions from states where Φ2 is true by a single one toward
sgoal. From a mathematical viewpoint, deleting a transition
is equivalent to labeling it with 0 probability. By multiply-
ing each non-zero transition pij of the original DTMC by a
coefficient mij ∈ {0, 1}, it is thus possible to delay the de-
cision whether a transition should be deleted or not by later
assigning 0 or 1 to the corresponding coefficientmij . To con-
struct D̄, we also need to be able to connect a transient state
to sgoal or s¬goal. In order to do that, we complete our scaf-
folding by introducing two transitions, labelled aisgoal and
ais¬goal , to connect each state i to the newly introduced
sgoal and s¬goal, respectively. These labels can be assigned
at run time value 1 in case the construction of D̄ requires to
connect the transient state i to sgoal or s¬goal, respectively.
By applying the scaffolding procedure to our example, we

obtain for matrices Q and R:

Q =


0 m0,1 0 0 0
0 0 m1,2y 0 m1,4(1− x− y)
0 0 0 m2,3(1− z) 0
0 0 m3,20.15 0 m3,40.85
0 0 0 0 0



R =


0 0 0 a0,8 a0,9
0 m1,6 × x 0 a1,8 a1,9
0 0 m2,7 × z a2,8 a2,9
0 0 0 a3,8 a3,9

m4,5 0 0 a4,8 a4,9


The last phase of the decision procedure in Section 3.2.1

requires to sum the probabilities of reaching every absorbing
state in Sgoal. This set will be known at run time, when
the subformula Φ2 can be evaluated. At design time, we
simply compute the entire matrix B (the probabilities of
going from each transient state to each absorbing state) from
the original DTMC, instrumented with the just presented
scaffolding. At run time, when the set Sgoal becomes known,
we assign a value to mij and aij coherently with what we
did in Section 3.2.1 and sum all the bij from the transient i
in which the formula is being evaluated to a state j ∈ Sgoal.
Concerning Next and Bounded Until operators, the meth-

ods described in Section 3.2.2 are still valid, though they

have to be applied to the matrix P instrumented with the
scaffolding, so that, at run time, it is possible to assign values
to mij and aij to account for the newly acquired knowledge.

In the case of nested path operators, at design time, it is
not possible to exploit the mixed–symbolic (expanded via
Laplace) and numeric–computation of bij presented in Sec-
tion 3.1. Nevertheless, being mij and aij boolean, instead of
floating point multiplications with constant values it is pos-
sible to use faster bitwise AND, while multiplying a polyno-
mial by 1 has no cost and multiplying it by 0 trivially returns
0. Thus the introduction of the scaffolding does not affect
significantly the complexity of the design-time analysis we
illustrated in Section 3.1.

At run time, in the case of nested path operators, the
PCTL formula cannot be evaluated in a single step, as we
did for flat formulae. Nevertheless the number of expressions
to compute is linear in the number of path operators, and
each formula has to be evaluated at most for all transient
states. Each evaluation still works on a polynomial. The
run-time efficiency gain over conventional model checkers is
discussed next for all PCTL formulae.

4. VALIDATION
The main goal of this work is to find an efficient way of

computing reliability properties in frequently changing envi-
ronments. We described a solution that performs a (design-
time) computationally expensive derivation of verification
formulae that can be evaluated very efficiently at run time,
when parameter values become known. The approach fits
the very frequent situation in which time consumption dur-
ing development is not critical, but run-time evaluation of
verification formulae is subject to tight time constraints.

Concerning run-time evaluation5, we compared the per-
formance of a simple Java/C prototype implementation of
our approach with the outputs produced by two widely used
probabilistic model checkers (PRISM [18] and MRMC [21])
and with a numerical computation of results of formulae by
Matlab. All the tools were required to produce an approxi-
mation of at most 10−15 and to run with its default solution
strategy.

The test suite is composed of 127 samples. Each sample is
a randomly generated DTMC with a number of states vary-
ing from 50 to 500 (with step 50), with 2 absorbing states
(namely correct completion and failure). Each state has a
number of outgoing transitions randomly sampled from a
Gaussian distribution with mean 10 and standard deviation
2. The number of variable states is 4 for all the samples,
and when a state is variable so are all its outgoing transi-
tions. We did not consider the process spawning time and
we report as execution time the one provided by each tool.
The execution environment is a dedicated machine with 2 In-
tel(R) Xeon(R) CPU E5530 2.40GHz and 8Gb of RAM. The
operating system is Ubuntu Server 2.6.24-24, 64bit. Matlab
version is 2008a (release 7.6.0.324), PRISM version 3.3.1 and
MRMC 1.4.1 both compiled at 64bit with default compiling
options. Our prototype generates the input files for all of
these tools and a C program computing our formulae. Con-
cerning PRISM, here we consider model-checking time only,
which does not take into account the model construction

5The software used for the experimental as-
sessment and the datasets are available at
http://home.dei.polimi.it/filieri/icse2011



time [18] (up to 15 secs for a 500 states DTMC).
The empirical validation focused on reachability formulae.

In practice, most useful reliability properties are expressed
as reachability formulae. In addition, as we showed in Sec-
tion 3, reachability is at the core of analysis for also other
PCTL properties.
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Figure 4: Runtime Verification.

The result of our comparison is shown in Figure 4 (we
use a logarithmic scale for time). Computation time growth
quickly as the size of the DTMC raises, both for PRISM
and MRMC. PRISM exhibits serious performance problems,
probably due to the fact that it is unable to take advantage of
its symbolic engine [24], which instead performs pretty well
in the reduction of complex PCTL formulae to reachability
problems. The state-space reduction approach adopted by
MRMC [22] seems to be more successful for our samples.
PRISM becomes an order of magnitude worse than our ap-
proach after 75 states, while MRMC after 200 states. With
500 states PRISM takes an order of 106 µs and MRMC
still 104 µs. We also used Matlab to compute the same
procedure based on linear algebra that was adopted in our
methodology, but with numerical methods. Input matrices
were declared as sparse, so that the Matlab numerical engine
chooses the best algorithm to perform computation.
The runtime performance of our tool is close to a con-

stant for reachability formulae. Independent of the size of
the input DTMC, computation time is in the order of 103 µs
with a maximum of 2014 µs, an average of 1565.27 µs and
a standard deviation of 322.77 µs. Fluctuations in the val-
ues are due to the topology of the matrices, which can lead
to longer or shorter polynomial forms in our mathematical
formulae, depending on how they scatter variable symbols
during computation. The gap between 450 and 500 is es-
sentially due to some outliers in the dataset, whose effect
can be reduced by extending the sample set (available on
the web). In any case, the number of possible combination
of those symbols is always bounded. Remember that we
are considering the case in which only a few states are vari-
able, and their number is the most influent parameter for
our complexity, determining how many variables appear in
our mathematical formulae. Our approach is independent
of the size of the DTMC, and the resulting mathematical
formula can be implemented directly in any programming
language, without any need to integrate with external tools
or libraries. Notice that the mathematical formula we pro-
duce is not optimized neither at the computation level, by
grouping terms of factorizing polynomials, nor at the com-
pilation level (e.g., via optimization flags for mathematical

computation as in gcc6).
The price for such a fast run-time evaluation has to be

paid at design time, though only once. As explained in
Section 3, the three parameters on which design-time com-
putation depends are: (1) the size of the system, (2) the
number of variable states, and (3) the number of transitions
outgoing from variable states. Our prototype design-time
symbolic manipulation engine is not optimized; thus the ex-
ecution times reported hereafter are just an indicative order
of magnitude of the complexity scale of the problem in a
non-parallel execution environment. All the following exper-
iments were conducted in the same execution environment
described above for run-time performance evaluation. Exe-
cution on a parallel machine might bring a drastic reduction
of execution time.

All DTMCs in the following test suites have 2 absorbing
states representing successful termination and failure of a
hypothetical system. The DTMC are generated randomly
with 2 variable states and an average of 10 outgoing transi-
tions (standard deviation 2). As before, if a state is variable,
so are all of its outgoing transitions.The reliability property
is expressed as the reachability of a successful termination
state.
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Figure 5: Precomputation time over DTMC’s size.

Figure 5 describes how pre-computation time varies ac-
cording to the size of the system. The grey line shows an
interpolated trend-line whose equation is also shown in the
figure. The expected complexity in this case was n3, where
n is the number of states in the DTMC. As a matter of fact,
the use of Jama7 for the numerical part of the computation
slightly reduced the expected computation time, which is
still a low-order polynomial.

The number of variable states is the most critical param-
eter for design-time pre-computation. Figure 6 reports pre-
computation time for a number of variable states from 1 to
5.

All the sample DTMCs (3 per class) are composed by 200
states, each of those with an average of 10 outgoing transi-
tions (standard deviation 2). The time axis in Figure 6 is in
logarithmic scale. The diagram shows that time complexity
is exponential and roughly in the order of 14c, where c is
the number of variable states, which is consistent with what
one expects considering the randomness of the number of

6http://gcc.gnu.org
7http://math.nist.gov/javanumerics/jama
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Figure 6: Precomputation time over variable states.

transitions of the input samples.
The last parameter which affects design-time pre-computation

is the average number of transitions from variable states.
Figure 7 shows the results of our experiments. For simplic-
ity we sampled the number of outgoing transitions for all the
states (both variable and not) from a Gaussian distribution
having as mean the number of transitions on the abscissa
and standard deviation equal to mean/4 (rounded to the
closest integer). The DTMC has 200 states, 2 of which are
variable. Hence the expected complexity is in the order of
τ2, which was confirmed by the empirical results.
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Figure 7: Precomputation time over τ .

5. RELATED WORK
In this paper we focused on reliability requirements for

DTMC-based models. Based on the seminal work described
in [6], DTMCs become the most widely adopted modeling
formalism to deal with reliability at architecture level. A
number of approaches have been proposed in this direction
[19, 5]. The latter presents a framework for component reli-
ability prediction whose objective is to construct and solve
a stochastic reliability model allowing software architects
to explore competing alternatives. Specifically, the authors
tackle the definition of reliability models at architectural
level and the problems related with parameter estimation.
Besides the basic estimation of failure occurrence, there

are a number of advanced reliability properties that can be
analyzed by means of DTMC-based techniques, e.g. failure
propagation [9] and failure evolution and transformation in
presence of multiple failure modes [13].

An important problem, shared by all design approaches
based on DTMCs, is how to get interaction and failure prob-
ability values [14]. Many solutions came out from the re-
search community, from accelerated test [17] to mining of
bug repositiories [26], up to the estimation of failure prob-
abilities even in case no failure has been observed [25], and
so and so on. To make our methodology worthy, one must
be able to estimate relevant system parameters on-the-fly,
by monitoring the system. Many methods exist to support
reasoning on non-functional properties of software based on
models that are analyzed at run-time by relying on moni-
toring such as [3, 12, 28, 29], but for all of them the tighter
bottleneck is how to realize that a requirement is being vio-
lated in a time short enough to allow effective reactions.

Probabilistic model-checking plays a crucial role in eval-
uating reliability properties, typically expressed in PCTL,
over DTMC models of the running system. In practice,
however, they require minutes or more to evaluate prop-
erties over large models, thus hindering planning and re-
configuration capabilities that must respond to tighter time
bounds. In [11] Daws proposed a procedure to first convert
the DTMC into a finite automaton from which it is possi-
ble to obtain a corresponding regular expression. This ex-
pression can be evaluated to a mathematical formula which
represents any arbitrary reachability property. Daws’ ap-
proach is restricted to formulae without nested probabilis-
tic operators and the outcoming regular expression grows
quickly with the number of states composing the DTMC
(nlog(n)). In [16] Hahn et al. propose a refinement of the
approach presented in [11] for reachability formulae which
combines state space reduction techniques and early evalu-
ation of the regular expression in order to improve actual
execution times when only a few variable parameters ap-
pear in the model. The improvement in [16] requires n3

arithmetic operations among polynomials, performing bet-
ter than [11] in most practical cases, although still leading

to a nlog(n) long expression in the worst case. As opposed
to our approach, [16] only deals with reachability proper-
ties. For reachability properties, by applying our approach
in a sequential environment and considering each paramet-
ric transition as a polynomial expression, one can obtain ap-
proximately the same complexity as [16] without resorting
to particularly efficient determinant computation methods
[20]. For example, by applying the Coppersmith–Winograd
algorithm we could reduce complexity to n2.376. Paralleliza-
tion, as well as exploitation of sparsity of matrix W (see
Section 3.1) would lead to an even higher improvement in
design-time computation performance.

6. CONCLUSIONS AND FUTURE WORK
We addressed the problem of efficient run-time model check-

ing of reliability models expressed as DTMCs. We provided
a mathematical approach that divides the model checking
process in two steps to be computed respectively at design
time and run time, improving considerably the run-time per-
formance of analysis. The approach, which is particularly
valuable for systems with a limited number of variability
points, provides full support to PCTL and is particularly
efficient for reachability properties.

We implemented the approach in a prototype tool, which
will be made available as an open source artifact. We per-
formed extended simulations, but for space reasons we could
only report on selected cases. We focused on comparing



our solution with state-of-the-art tools, like PRISM [18] and
MRMC [21]. An empirical comparison with PARAM8, the
tool implementing the approach of [16], concerning reach-
ability properties is also planned after we will develop an
optimized implementation of our tool. Our approach is a
solution based on linear algebra and well known algorithms,
that can be highly parallelized to make our approach more
efficient. In the future, we plan to complement simulation-
based validation with real-world case studies to stress the
scalability and effectiveness of the approach. In addition,
we plan to reduce design-time complexity by means of state
space reduction and partial order reduction techniques.
Finally, the approach might be extended both to other

logics, such as PCTL*, and to other Markov models, such as
Continuous Time Markov Chains for performance analysis.
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