
Conquering Complexity via Seamless Integration
of Design-Time and Run-Time Verification

Antonio Filieri, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli

DeepSE Group @ DEI - Politecnico di Milano, Italy
{ filieri | ghezzi | mirandola | tamburrelli }@elet.polimi.it

Abstract. The complexity of modern software systems has grown enor-
mously in the past years with users always demanding for new features
and better quality of service. Software applications evolved not only in
terms of size, but also in the criticality of the services supported. At the
same time, software artifacts changed from being monolithic and cen-
tralized to modular, distributed, and dynamic. Systems are now com-
posed of heterogeneous components and infrastructures on which soft-
ware is configured and deployed. Interactions with the external envi-
ronment and the structure of the application, in terms of components
and interconnections, are often required to change dynamically. All these
causes challenge our ability to achieve acceptable levels of dependability.
To guarantee system dependability, it is necessary to combine off-line
(development-time) analysis techniques with run-time mechanisms for
continuous verification. Off-line verification checks the correct behavior
of the various components of the application under given assumptions on
the embedding environment. But because verification can be incomplete,
the assumptions about reality it relies upon are subject to uncertainty
and variability and, in addition, the various parts of a complex system
may evolve independently, it is necessary to extend verification to also
cope with the runtime behavior of software. This paper motivates the
need for continuous verification to guarantee dependability and shows
how this goal may be tackled. In particular, it focuses attention on two
important dependability attributes: reliability and performance.

1 Introduction

Software is the driving engine of modern society. Most human activities—including
critical ones—are either software enabled or entirely managed by software. Ex-
amples range from healthcare and transportation to commerce and manufactur-
ing to entertainment and education. As software is becoming ubiquituous and
society increasingly relies on it, the adverse impact of unreliable or unpredictable
software cannot be tolerated. Software systems are required to be dependable,
to avoid damaging effects that can range from loss of business to loss of human
life.

At the same time, the complexity of modern software systems has grown
enormously in the past years with users always demanding for new features

2

and better quality of service. Software systems changed from being monolithic
and centralized to modular, distributed, and dynamic. They are increasingly
composed of heterogeneous components and infrastructures on which software
is configured and deployed. When an application is initially designed, software
engineers often only have a partial and incomplete knowledge of the external
environment in which the application will be embedded at run time. Design
may therefore be subject to high uncertainty. This is further exacerbated by the
fact that the structure of the application, in terms of components and inter-
connections, often changes dynamically. New components may become available
and published by providers for use by potential clients. Some components may
disappear, or become obsolete, and new ones may be discovered dynamically.
This may happen, for example, in the case of Web service-based systems [8].
This also happens in pervasive computing scenarios where devices that run ap-
plication components are mobile [56]. Because of mobility, and more generally
context change, certain components may become unreachable, while others be-
come visible during the application’s lifetime. Finally, requirements also change
continuously and unpredictably, in a way that is hard to anticipate when sys-
tems are initially built. Because of uncertainty and continuous external changes
the software application is subject to continuous adaptation and evolution. All
this is challenging our ability to achieve the required levels of dependability. F.P.
Brooks anticipated this when he said Complexity is the business we are in and
complexity is what limits us [16].

This paper focuses on how to manage design-time uncertainty and run-time
changes and how to verify that the software evolves dynamically without dis-
rupting the dependability of applications. We refer to dependability as broadly
defined by the IFIP 10.4 Working Group on Dependable Computing and Fault
Tolerance1 as:

[..] the trustworthiness of a computing system which allows reliance to
be justifiably placed on the service it delivers [..]

Dependability thus includes as special cases such attributes as reliability, avail-
ability, performance, safety, security. In this paper we focus our attention on
two main dependability requirements that typically arise in the case of decen-
tralized and distributed applications: namely, reliability and performance. Both
reliability and performance depend on environment conditions that are hard to
predict at design time, and are subject to a high degree of uncertainty. For ex-
ample, performance may depend on end-user profiles, on network congestion, on
load conditions of external services that are integrated in the application. Simi-
larly, reliability may depend on the behavior of the network and of the external
services that compose the application being built.

Our approach to the development and operation of complex and dynamically
evolvable software systems is rooted in the use of formal models. Hereafter we
discuss how uncertainty and anticipation of future changes can be taken into ac-
count when the system is initially designed. In particular, we focus on the formal

1 http://www.dependability.org/wg10.4/

3

models that can be built at design time to support an initial assessment that
the application satisfies the requirements. We also show that models should be
kept alive at run time and continuously verified to check that the changes with
respect to the design-time assumptions do not bring to requirements violations.
This requires seamless integration of design-time and run-time verification. If
requirements violations are detected, appropriate actions must be undertaken,
ranging from off-line evolution to on-line adaptation. In particular, much re-
search is currently investigating the extent to which the software can respond to
predicted or detected requirements violation through self-managed reactions, in
an autonomic manner. These, however, are out of the scope of this paper, which
only focuses on design-time and run-time verification.

Our contribution is structured as follows. Section 2 introduces a running
example, which is inspired by a Web-service based e-Health application, called
TeleAssistance (TA). Section 3 surveys the main formal notations we use to
model applications and reason about compliance of its design with respect to
its non-functional requirements. We then discuss (Section 4) how design-time
requirements verification may be accomplished in presence of uncertainty. This
will be done by first providing high-level models of the running TA example and
then by formally verifying requirements satisfaction under some assumptions
about the run-time environment in which TA will be embedded. Section 5 fo-
cuses on monitoring the run-time behavior and performing continuous run-time
verification. Finally, Section 7 provides pointers to on-going work and draws
some conclusions.

2 A Running Example

This section illustrates the running example adopted in this paper to illustrate
the proposed design and run-time approach. An e-Health application, initially
studied in [7] and then further used as a case-study in [28], is designed as a dis-
tributed system for medical assistance. The application is built by composing a
number of existing Web services. Web-service compositions (and service-oriented
architectures in general [26]) make an excellent case for the need of keeping
models alive at run time. A Web-service composition is an orchestration of Web
services aimed at building a new service by exploiting a set of existing ones. The
orchestration is performed through the BPEL workflow language [2]. A BPEL
composition is, in turn, a service that can be composed with other services in a re-
cursive manner. BPEL instances coordinate services that are typically managed
by independent organizations, other than the owner of the service composition.
This distributed ownership implies that the final functional and non-functional
properties of the composed service rely on behaviors of third-party components
that influence the obtained results, as we will discuss hereafter.

The running example, called TeleAssistance (TA), focuses on a composite
service supporting remote assistance of patients who live in their homes. Figure
1 illustrates the TA composite service through a graphical notation into which
BPEL constructs are mapped. The mapping between BPEL constructs and the

4

PA
(home device)

FAS

LAB

TA ProcessstartAssistance

analyzeData

vitalParamsMsg pButtonMSg

Alarm

stopMsg

AlarmchangeDrugchangeDoses

OnMessage OnMessage OnMessage

Fig. 1. TA BPEL Process

corresponding graphical notation is described in Table 1. The reader who ignores
BPEL may find a brief summary in the Appendix.

Table 1. BPEL Graphical Notation

Activity Notation Activity Notation Activity Notation

receive wait pick

invoke terminate flow

reply sequence fault handler
!

assign switch event handler

throw
!

while compensation
handler

The process starts as soon as a Patient (PA) enables the home device supplied
by TA, which sends a message to the process’ receive activity startAssistance.
Then, it enters an infinite loop: every iteration is a pick activity that suspends the
execution and waits for one of the following three messages: (1) vitalParamsMsg,
(2) pButtonMsg, or (3) stopMsg. The first message contains the patient’s vital
parameters that are forwarded by the BPEL process to the Medical Laboratory
service (LAB) by invoking the operation analyzeData. The LAB is in charge of
analyzing the data and replies by sending a result value stored in a variable

5

analysisResult. A field of the variable contains a value that can be: changeDrug,
changeDoses or sendAlarm. The latter message triggers the intervention of a
First-Aid Squad (FAS) composed of doctors, nurses, and paramedics, whose
task is to visit the patient at home in case of emergency. To alert the squad, the
TA process invokes the operation alarm of the FAS. The message pButtonMsg
caused by pressing a panic button also generates an alarm sent to the FAS.
Furthermore, the message stopMsg indicates that the patient may decide to
cancel the TA service.

The system should be designed to satisfy a number of requirements concern-
ing the Quality of Service (QoS), among which:

– R1: The probability P1 that no failures ever occurs is greater than 0.7
– R2: If a changeDrug or a changeDoses has occurred the probability P2 that

the next message received by the TA generates an alarm which fails (i.e., the
FAS is not notified) is less than 0.015

– R3: Assuming that alarms generated by pButtonMsg have lower priority than
the alarms generated by analyzeData, the probability P3 that a high priority
alarm fails (i.e., it is not notified to the FAS) is less than 0.012

– R4: The average response time of the Alarm service (RTAlarm) must be less
than 1 second

– R5: The utilization of the AnalyzeData (UAnalyzeData) must be less than
90%

– R6: The average number of pending requests (i.e., the queue length) to the
FAS service (QLFAS) must be less than 60

Notice that requirements R1 − 3 refer to the system’s reliability. Conversely,
R4− 6 refer to performance.

In the sequel, we will discuss how formal models can support design-time
verification that the system being designed satisfies the requirements, under
certain assumptions about the behavior of the environment. We will then show
how the models can be kept alive at run time to support continuous verification
that requirements are not violated despite changes in the assumptions under
which the system was initially verified.

3 Non Functional Models for Complex Systems

This section provides an introduction to the non-functional models we adopt to
express QoS properties. As previously introduced, we focus on reliability and
performance. As non-functional models we rely respectively on Discrete Time
Markov Chains (DTMCs) ands Queueing Networks (QNs). Let us first introduce
Markov models in general and then describe DTMCs and QNs [15].

3.1 Markov Models.

Several approaches exist in the literature for model-based quality analysis and
prediction, spanning the use of stochastic Petri nets, queueing networks, layered

6

queueing network, stochastic process algebras, Markov processes, fault trees,
statistical models and simulation models (see [3] for a recent review and classi-
fication of models for software quality analysis).

In this work, we focus on Markov models, which are a very general evaluation
model that can be used to reason about performance and reliability properties.
Furthermore, Markov models include other modeling approaches as special cases,
such as queueing networks, stochastic Petri nets [59] and stochastic process al-
gebras [24].

Specifically, Markov models are stochastic processes defined as state-transition
systems augmented with probabilities. Formally, a stochastic process is a collec-
tion of random variables X(t), t ∈ T all defined on a common sample (probabil-
ity) space. X(t) is the state at time t, where t is a value in a set T that can
be either discrete or continuous. In Markov models, states represent possible
configurations of the system being modeled. Transitions between states occur
at discrete or continuous time-steps and the probability of making transitions
is given by exponential probability distributions. The Markov property charac-
terizes these models: it means that, given the present state, future states are
independent of the past. In other words, the description of the present state
fully captures all the information that could influence the future evolution of the
process. The most used Markov models include:

– Discrete Time Markov Chains (DTMCs), which are the simplest Markovian
model where transitions between states happen at discrete time steps;

– Continuous Time Markov Chains (CTMCs), where the value associated with
each outgoing transition from a state is intended not as a probability but as
a parameter of an exponential probability distribution (transition rate);

– Markov Decision Processes (MDPs) [63], which are an extension of DTMCs
allowing multiple probabilistic behaviors to be specified as output of a state.
These behaviors are selected non-deterministically. MDPs are characterized
by a discrete set of states representing possible configurations of the system
being modeled and transitions between states occur in discrete time-steps,
but in each state there is also a non-deterministic choice between several
discrete probability distributions over successor states.

The solution of Markovian models aims at determining the system behav-
ior as time t approaches infinity. It consists of the evaluation of the stationary
probability πs of each state s of the model.

The analytical solution techniques for Markov models differ according to
the specific model and to the underlying assumptions (e.g., transient or non-
transient states, continuous vs. discrete time, etc.). For example, the evaluation
of the stationary probability πs of a DTMC model requires the solution of a
linear system whose size is given by the number of states. The exact solution
of such a system can be obtained only when the number of states is finite or
when the matrix of transition probabilities has a specific form. DTMCs includ-
ing transient and absorbing states necessitate a more complex analysis for the
evaluation of the average number of visits and absorbing probabilities. The de-
tailed derivation is discussed in [15]. A problem of Markov models, which also

7

similar evaluation models face, is the explosion of the number of states when
they are used to model real systems [15]. To tackle this problem tool support
(e.g., PRISM [52]) with efficient symbolic representations and state space reduc-
tion techniques [45,53] like partial-order reduction, bisimulation-based lumping
and symmetry reduction are required.

Given a Markov model it is possible to represent QoS requirements as non-
ambiguous properties expressed in an appropriate logic, such as probabilistic
temporal logics PCTL (Probabilistic Computation Tree Logic) [40], PCTL* [4],
PTCTL (Probabilistic Timed CTL) [54] and CSL (Continuous Stochastic Logic)
[5]. The significant benefits of using logic-based requirements specifications in-
clude the ability to define these requirements concisely and unambiguously, and
to analyze them using rigorous, mathematically-based tools such as model check-
ers. Furthermore, for logic-based specification-formalism the correct definition of
QoS properties is supported with specification patterns [27,38,37,49] and struc-
tured English grammars [38,49,71].

Markov models are widely used at design time to derive performance and/or
reliability metrics. For example, the work presented in [36] discusses in depth the
problem of modeling and analyzing the reliability of service-based applications
and presents a method for the reliability prediction of service compositions based
on the analysis of the implied Markovian models. The analysis of a CTMC
implied by a BPEL process is also used in [67] as a way to derive performance
and reliability indices of a service composition.

Discrete Time Markov Chains. DTMCs are specifically used to model re-
liability concerns. As introduced before, DTMCs are defined as state-transition
systems augmented with probabilities. States represent possible configurations
of the system. Transitions among states occur at discrete time and have an as-
sociated probability. DTMCs are discrete stochastic processes with the Markov
property, according to which the probability distributions of future states depend
only upon the current state.

Formally, a (labeled) DTMC is tuple (S, s0, P, L) where

– S is a finite set of states
– S0 ⊆ S is a set of initial states
– P : S×S → [0, 1] is a stochastic transition matrix (

∑
s′∈S P (s, s′) = 1 ∀s ∈

S). An element P (si, sj) represents the probability that the next state of the
process will be sj given that the current state is si.

– L : S → 2AP is a labeling function which assigns to each state the set of
Atomic Propositions a ⊆ AP holding in s. As discussed in [51], AP formally
is a fixed, finite set of atomic propositions used to label states with the
properties of interest which can be verified by a stochastic model checker.

A DTMC evolves from the initial state by executing a transition at each
discrete time instant. Being at time i in a state s, at time i+1 the model will be
in s′ with probability P (s, s′). The transition can take place only if P (s, s′) > 0.

A state s ∈ S is said to be an absorbing state if P (s, s) = 1. If a DTMC
contains at least one absorbing state, the DTMC itself is said to be an absorbing

8

DTMC. Furthermore, we assume that every state in the DTMC is reachable
from the initial state, that is there exists at least a sequence of transitions from
the initial state to every other state.

In an absorbing DTMC with r absorbing states and t transient states, rows
and columns of the transition matrix P can be reordered such that P is in the
following canonical form:

P =

(
Q R
0 I

)
where I is an r by r identity matrix, 0 is an r by t zero matrix, R is a nonzero
t by r matrix and Q is a t by t matrix.

Consider now two distinct transient states si and sj . The probability of mov-
ing from si to sj in exactly 2 steps is

∑
sx∈S P (si, sx) ∗ P (sx, sj). Generalizing

the process for a k-steps path and recalling the definition of matrix product,
it comes out that the probability of moving from any transient state si to any
other transient state sj in exactly k steps corresponds to the entry (si, sj) of the
matrix Qk. By generalization, the probability of moving from si to sj in 0 steps
is 1 iff si = sj , that is Q0.

Due to the fact that R must be a nonzero matrix, and P is a stochastic
matrix, Q has uniform-norm strictly less than 1, thus Qn → 0 as n→∞, which
implies that eventually the process will be absorbed with probability 1.

In the simplest model for reliability analysis, the DTMC modeling a task will
have two absorbing states, one representing the correct accomplishment of the
task, the other representing the failure of the system. The use of absorbing states
is commonly extended to represent different failures. For example, a failure state
may be associated with each invocation of an external service that may fail. A
basic feature of a reasoning system in this framework is to provide an estimate
for the probability of reaching an absorbing state or the ability to state whether
the probability of reaching an absorbing state associated with a failure is less
than a certain threshold.

3.2 Queueing Networks.

For performance models we exploit QNs. As introduced before, they can be
reduced to a Markov model and the solution of a QN might be obtained by
solving the underlying Markov process. However, for some classes of QNs, effi-
cient analytical solution techniques exist to determine the average values of the
performance metrics (e.g., average response time, utilization, etc.) or, in some
cases, also the percentile distribution of the metric of interest.

QNs [15,55] are a widely adopted modeling technique for performance anal-
ysis. QNs are composed by a finite set of: (1) Service Centers, (2) Links, (3)
Sources and Sinks, and (4) Delay Centers.

Service centers model system resources that process customer request. Each
service center is composed of a Server and a Queue. Queues can be characterized
by a finite or an infinite length. In this work we focus on service centers with infi-
nite queues. Service centers are connected through Links that form the network

9

topology. Servers process jobs—hereafter we refer to requests interchangeably
with the term jobs—retrieved from their queue following a specific policy (e.g.,
FIFO). Each processed request is then routed to another service center through
connections provided by links. More precisely, each server, contained in every
service center, picks the next job from its queue (if not empty), processes it, and
selects one link that routes the processed request to the queue of another ser-
vice center. It is possible to specify a policy for link selection (e.g., probabilistic,
round robin, etc.). The time spent in every server by each request is modeled by
continuous distributions such as exponential or Poisson distributions. Jobs are
generated by source nodes connected with links to the rest of the QN. Source
nodes are also characterized by continuous time distributions that model request
inter-arrival times. Sink nodes represent the points where job leave the system.
Finally, delay centers are nodes of the QN connected with links to the rest of the
network exactly as service centers, but they do not have an associated queue. De-
lay centers are described only by a service time, with a continuous distribution,
without an associated queue. They correspond to service centers with infinite
servers.

After modeling a software system as a queueing network, the model has to
be evaluated in order to determine quantitative performance metrics, such as:

– Utilization: the ratio between the server’s busy time over the total time.
– Response Time: the interval between submission of a request into the QN

and output of results.
– Queue Length: the average queue length for a given service center.
– Throughput : the number of requests processed per unit of time.

The above measures are defined for a single service center, but they can
also apply to the whole network. A first step in the evaluation of a QN can be
achieved by determining the system bounds; specifically, upper and lower bounds
on system throughput and response time can be computed as functions of the
system workload intensity (number or arrival rate of customers). Bounds usually
require a very little computational effort, especially for simple kinds of QN, like
single-class networks [21,48].

More accurate results can be achieved by solving the equations which gov-
ern the QN behavior. Solution techniques can be broadly classified as analytical
methods (which can be exact or approximate) and simulation methods. Ana-
lytical methods determine functional relations between model parameters and
performance metrics. Queueing networks satisfying the BCMP theorem assump-
tions (see [10] for further details) are an important class of models also known as
product-form models. Such models are the only ones that can be solved efficiently,
while the solution time of the equations governing non-product-form queueing
network grows exponentially with the size of the network. Hence, in practical sit-
uations the time required for the solution of non-product-form networks becomes
prohibitive and approximate solutions have to be adopted. Analytical solutions
often provide only the average values of the performance metrics (e.g., average
response time, utilization, etc.). Detailed solutions can be obtained by solving
the Markov process underlying the queueing network model (details about the

10

derivation of the Markov process can be found in [15]).
For non-product-form QNs very often simulation is used to evaluate performance
metrics. Simulation is a very general and versatile technique to study the evo-
lution of a software system, which is described by a simulation program that
mimics the dynamic behavior of the system by representing its components and
interactions in terms of functional relations. Non-functional attributes are esti-
mated by evaluating the values of a set of observations gathered in the simulation
runs. Simulation results are then obtained by performing statistical analyses of
multiple runs [44]. With simulation it is possible to obtain very accurate results
but at the cost of a higher computational effort with respect to the analytical
solution of QNs.

Modeling Complex Systems with Queueing networks. In modern com-
plex systems, components may fall into different categories. First, they may differ
in the way they are used (use mode). Their use may be exclusive; that is, the
component is only used by the currently designed application. In this case, the
component may be modeled as a service center, since we have full control of the
flows of requests into its input queue. In other cases, the component is shared
among different applications, which we may not know, although they concur-
rently access it. The component cannot be modeled as service center because
other jobs, which we cannot control, also can access the service. In such a case,
the component can be more simply—but less accurately—modeled as a delay
center.

As an example of these two cases, consider a component which provides
functionalities for video encoding and decoding. In case it is a component-off-
the-shelf (COTS), which is deployed within the current application and it is used
exclusively by it, the designer has full control and visibility of its activations,
and thus it can be modeled by a service center. If, however, the tool is offered
by a provider as a Web service, it is potentially accessed by many clients, and
the designer has no control nor visibility of the queues of requests.

Another key factor that must be considered by the modeler is visibility of
the internals of the component. Both accuracy and trust of the component’s
performance characteristics depend on how detailed the designer’s knowledge
is of the component’s internals. If an accurate description of the component’s
architecture is available, its performance can be predicted quite accurately, for
example using a design-time tool like Palladio [12]. If instead the component is a
black-box, like in the case of Web services, the designer must rely on less trustable
figures published by the service provider or inferred by past observations. Note
that visibility is often related to ownership. If one owns a component, then
normally one also has full access to its internals, and conversely. Furthermore,
it is also related with stability. Whenever a component is owned, it only evolves
under control of the owner. If an accurate model of the component is available,
there is no need to monitor the component at run time for possible deviations
and, consequently, to update the model.

The above discussion leads to the following main component categories:

11

– White-Box (WB) components. Their internal architecture is fully visible and
understood by the designer; for example, they have been developed in-house.
In addition, their use is exclusive by the current application.

– Grey-Box (GB) components. Their use is exclusive, but their internals are
not known; only the executable version of the component is available. COTS
are a typical example.

– White-Box Shared (WBS) components. The designer has full visibility of
the component, which however is not used exclusively within the application
being developed. An example is an in-house developed Web-service that is
used by the current application, but is also exported for use by others.

– Black-Box (BB) components. The designer has no visibility of the internals of
the component, whose use is shared with other unknown clients. An example
is an externally developed Web service developed by third parties that is
available on-line.

Table 2 summarizes the previous discussion by showing the main categories of
components, the choices we made for modeling them via QNs, and the graphical
notation we use.

Table 2. QN Notation for Open Systems

Notation Name Use Mode Visibility Description

White-Box exclusive yes service center

Grey-Box exclusive no service center

Source
White-Box

Shared
shared yes

service center
with source node

Black-Box shared no delay center

4 Design-Time Modeling and Verification of the TA
System

Hereafter we apply the formalisms discussed in the previous section in the initial
design and verification of the TA system. The first step of our approach con-
sists of developing models that can be used to reason about our non-functional
properties of interest (reliability and performance). To do so, we identify the
parts that are subject to uncertainty and which may change in the value of
quality attributes. We especially focus on two major sources of uncertainty and

12

volatility: user profiles, which describe how system functions will be used by
user transactions, and external components (services), which may change their
quality of service over time in an unexpected and uncontrolled manner. These
may be viewed as black-box components, accessible via an abstract interface
that only provides visibility of the stable information upon which we can rely.

We assume that uncertain information can be expressed in probabilistic
terms. This may be difficult in practice, but it is a necessary step in our ap-
proach if we want to be able to predict and assess non-functional properties at
design time. Several practical guidelines may be followed as a guidance through
this step. For example, initial estimates may be provided by the designer based
on past experience with similar systems. In the case where external compo-
nents (services) managed by third parties are integrated into the current system,
the estimate may be provided by the service-level agreement subscribed by the
provider or by ad-hoc tests performed by client stubs.

The next section shows how we model reliability of the TA system via
DTMCs. We then show how performance can be modeled by exploiting QNs.
Finally we discuss how an initial assessment of requirements satisfaction may be
obtained by analyzing the models.

4.1 DTMCs at work

Figure 2 illustrates the result obtained by modeling the TA running example
introduced in Section 2. The modeling activity consists of identifying relevant
states of the system, assigning probabilities to branches, and failure probabilities
to service invocations. Notice that failure states are highlighted in grey. In this
example, we adopted numerical values chosen for illustrative purposes; real-world
medical applications usually require lower failure probabilities. Usage profiles are
also represented in Figure 2 as probabilities associated with transitions. As an
example, consider the transitions exiting state 0. With probability 0.3 the user
pushes a button to generate an alarm, whose notification to the first-aid squad
fails with probability 0.04.

The DTMC derivation can be done either manually or through automatic
transformation techniques. Several contributions that appeared in the literature
proposed techniques to derive DTMC starting from a formal description of the
system’s behavior (e.g.,[36,67,31]).

4.2 QNs at work

Figure 3 illustrates the result obtained by modeling the TA example with a
QN. Notice that transition probabilities among service centers are consistent
with values used in Figure 2. Before applying the concepts and the taxonomy
illustrated in Section 3.2, we need to take into consideration some performance
data describing the behavior of the components part of the TA system. Such
data, as for transition probabilities in DTMCs, might be provided by domain
experts or other existing systems. Table 3 summarizes this information set.

13

0

0.1

1

3

0.6
vitalParamsMsg

2

stopMsg

71

0.3 9

10

61 12
1

0.04

0.02

0.01

5

Exit
1

1

0.99

0.98

Init

0.02

11

FailedAlarm
1

13
1

14 1

FailedChangeDrug

FailedChangeDose

changeDrug

FailedAnlysis

8

FAS

0.96
1

pButtonMsg

analyzeData

4

1

notifyPA

alarm

changeDoses
0.45

0.12 0.41

Fig. 2. TeleAssistance DTMC Model

Table 3. QN Additional Parameters

Component Parameter Value

Source 0 Arrival Rate Exponential with λ = 0.5

Source 1 Arrival Rate Exponential with λ = 0.1

startAssistance Service Time Exponential with λ = 1

startAssistance Queue ∞
stopMsg Service Time Exponential with λ = 1

stopMsg Queue ∞
FAS Service Time Exponential with λ = 1.45

FAS Queue ∞
Alarm Service Time Exponential with λ = 1.5

AnalyzeData Service Time Exponential with λ = 2.5

changeDoses Service Time Exponential with λ = 1.2

changeDrug Service Time Exponential with λ = 1.2

14

1

startAssistance

Source
0

5

Alarm

6

changeDoses

3

FAS

2

stopMsg

7

changeDrug

4

AnalyzeData

0.1

0.3

0.6 0.12

0.45

0.41

10.96

0.98

0.99

Source
1

0.02

0.02

0.04

0.01

Fig. 3. TeleAssistance QN Model

Concerning the components and services part of the TA system, we assumed
the changeDrug, changeDoses and sendAlarm service centers as Web services
provided by third-party organizations. Conversely, we considered the FAS service
as a service owned by the same organization of the TA system but potentially
used by other healthcare functions. According to these assumptions, we model
the former as Black-box centers and the latter as White-Box Shared.

To facilitate the software engineer’s task, several methodologies can be found
in the literature to support transformation techniques that can derive QN-based
models (both product and non-product) starting from software models. Some of
the proposed methods are reviewed in [6,11,1].

4.3 Design-Time Verification

Once the models of the application under design are available, they can be
analyzed to verify requirements satisfaction. Let us start our discussion from
reliability and let us consider the reliability model illustrated in Figure 2.

The reliability requirements R1 − R3 can be proven to hold for the com-
posite service. Several instruments are in place to verify stochastic properties
on DTMCs, with different pros and cons. The most basic approach is based on
probability theory’s formulas, which can be solved by means of numerical meth-
ods [65]; these approaches are typically fast and very accurate, but most often
used for simple properties such as the probability of reaching a certain state. The

15

most popular verification tools nowadays are the probabilistic model checkers.
The two most widely adopted are PRISM [42] and MRMC [46]. Model-checkers
come with logics expressive enough to assert complex properties over the set of
all possible paths through a DTMC, but they typically make use of iterative
methods which provide a finite accuracy (though this can be arbitrarily high at
the price of a polynomially longer computation time). For very large systems
which are hard to be analyzed by means of mathematical methods, it is also
possible to apply some verifiers which adopt Monte-Carlo simulation [68].

For example, by using the DTMC probabilistic model checker PRISM [42],
we obtain: P1=0.7421, P2=0.0147, P3=0.0048. As we discussed earlier, model
parameters (i.e., transition probabilities) might be provided by: (1) domain ex-
perts, (2) similar existing systems, or (3) previous versions of the system under
design. In any case, such parameters represent only estimates and run-time anal-
yses are in charge of refining them together with a continuous verification of the
compliance with the system’s requirements as illustrated later on in Section 5.

Let us now consider performance and the QN model illustrated in Figure
3. By relying on parameters listed in Table 3 and exploiting a QN solver such
as JMT [14] we can evaluate the performance requirements R4−R6 and prove
to hold for the composite service. In particular, we obtained: RTAlarm=0.6667,
UAnalyzeData=0.8906, QLFAS=53.4771. Notice that model parameters might be
retrieved as previously mentioned for DTMCs transition probabilities.

5 Supporting Run-Time Verification

After an application is developed, it is deployed in the target environment to
interact with the real world. Regrettably, at run time reality may subvert the as-
sumptions made by software engineers at design time. For example, user profiles
may differ from the expected values, or may later change during operation. Like-
wise, the performance of an external service integrated in the application may
change, due for example to the deployment of a new version of the service which
provides additional features. Similarly, a service’s reliability may unexpectedly
decrease, due to the upload of a new, buggier release. For these reasons, it is
necessary that verification continues after the application’s delivery, to check if
changes cause a violation of requirements. If they do, the application must also
change.

We distinguish between two kinds of change: adaptation and evolution [56].
Adaptation refers to the actions taken at run time and affecting the architectural
level, to react to the changing environment in which the application operates.
In fact, changes in the physical context may often require the software architec-
ture to also change. As an example, a certain service used by the application
may become unaccessible as a new physical context is entered during execution.
Conversely, a new service may become visible. It may also happen that a cer-
tain service is changed unexpectedly by its owner and the change is found to be
incompatible with its use from the current application. Evolution instead refers
to changes in the application that are the consequence of changes in the require-

16

ments. For example, a new feature is added to the TA system to support medical
diagnosis remotely via video interaction with the patient. Adaptation must be
increasingly supported in an autonomic way. We use the term self-adaptation in
this case.

In our approach, evolution and (self) adaptation are triggered by run-time
verification, whenever a requirements failure is detected [35]. To support run-
time verification, the application’s model has to be alive at run time and it
must be fed with updated values of the parameters, which reflect the detected
changes in environment conditions. To detect changes—in turn–suitable run-time
monitors must be activated to collect the relevant data from the environment
[33,9]. In the TA example, a monitor should detect changes in the usage profiles
and in the reliability and performance characteristics of the external services.
To do so, the data observed at run time must be converted into probabilities
that are used to annotate the DTMC and the QN models of the TA example.
The conversion can be performed by learning algorithms, typically based on a
Bayesian approach, as shown in [28].

In the TA example, let us consider the effect of the following situations that
may be occur at run time.

– The service providing the FAS functionality is discontinued for some time
(it fails with probability 1). The verification procedure for reliability re-
quirements (a probabilistic model checker) detects a run-time violation of
requirement R1.

– The notifyPA operation, which was supposed to be completely reliable (fail-
ure probability equal to 0) is found out to fail with probability 0.01. The
model checker in this case detects a run-time violation of requirement R2.

– The distribution of reactions to analyzeData is found to be quite different
from the one assumed at design time. The probability discovered at run-time
that changeDoses is diagnosed is 0.20 instead of 0.45, the probability that
changeDrug is diagnosed is 0.31 instead of 0.41, the probability that alarm
is generated is 0.47 instead of 0.12, while the probability that a failure is
experienced has exactly the value hypothesized by the designer (0.20). The
model checker detects a run-time violation of requirement R3.

Performance requirements can also be checked for possible violation at run
time. Hereafter we provide a few examples of cases where the environment’s
behavior differs from the assumptions made during design and this would lead
to requirements violations, detected by the QN analyzer:

– Assuming that due to contextual issues the alarm is able to answer to an
average of 0.9 requests per second, instead of the value 1.5 expected, the
average response time of the service growths from 0.667 to 1.111, violating
requirement R4.

– If from monitoring data the actual measured request processing rate of the
data analyzer is 2 requests/sec, slower than the value expected at runtime
(2.5), then the utilization of the analyzer becomes 1.1135. Such a value, being
larger than 90%, leads to the violation of the requirement R5.

17

– The FAS component is shared with third parties. Their usage of the com-
ponent is modeled by source1. If those entities, out from the control of the
Tele Assistance company, increase their request rate from 0.1 to 0.2requests
per second, the waiting queue of the FAS saturates (in this model, the num-
ber of enqueued requests growths indefinitely) and begins to loose incoming
requests. This violates requirement R6 because QLFAS tends to ∞.

6 Related Work

In the last years, QoS prediction has been extensively studied in the context
of traditional software systems. In particular, there has been much interest in
model transformation methodologies for the generation of analysis-oriented tar-
get models (including performance and reliability models) starting from design-
oriented source models, possibly augmented with suitable annotations. Several
proposals have been presented concerning the direct generation of performance
analysis models. Each of these proposals focuses on a particular type of source
design-oriented model and a particular type of target analysis-oriented model,
with the former spanning UML, Message Sequence Chart, Use Case Maps, for-
mal language as AEmilia, ADL languages such as Acme, and the latter spanning
Petri nets, queueing networks, layered queueing network, stochastic process al-
gebras, Markov processes (see [6] for a thorough overview of these proposals and
the WOSP conference series [1] for recent proposals on this topic). A system-
atization of the current approaches in the framework of MDD and interesting
insights on future trends on this topic can be found in [3]. Some proposals have
also been presented for the generation of reliability models. All the proposals
we are aware of start from UML models with proper annotations, and generate
reliability models such as fault trees, state diagrams, Markov processes, hazard
analysis techniques and Bayesian models (see [43,13] for a recent update on this
topic).

More recently, with the increasing interest in the topic of reconfigurable and
self-adaptive computing systems [23], several papers appeared in the literature
dealing with self-adaptation of software systems to guarantee the fulfillment of
QoS requirements. Hereafter, we present a short summary of existing work that
makes use of models to perform this step. GPAC (General-Purpose Autonomic
Computing), for example, is a tool-supported methodology for the model-driven
development of self-managing IT systems [17]. The core component of GPAC is
a generic autonomic manager capable of augmenting existing IT systems with a
MAPE [47] autonomic computing loop. The GPAC tools and the probabilistic
model checker PRISM [42] are used together successfully to develop autonomic
systems involving dynamic power management and adaptive allocation of data-
center resources [18]. KAMI [28] is another framework for model evolution by
runtime parameter adaptation. KAMI focuses on Discrete Time Markov Chain
models that are used to reason about non-functional properties of the system.
The authors adapt the QoS properties of the model using Bayesian estimations
based on runtime information, and the updated model allows the verification of

18

QoS requirements. The approach presented in [64] considers the QoS properties
of a system in a web-service environment. The authors provide a language called
SLAng, which allows the specification of QoS to be monitored.

The Models@Run.Time approach [62] proposes to leverage software mod-
els and to extend the applicability of model-driven engineering techniques to
the runtime environment to enhance systems with dynamic adapting capabili-
ties. In [69], the authors use an architecture-based approach to support dynamic
adaptation. Rainbow [32] also updates architectural models to detect inconsis-
tencies and in this way it is able to correct certain types of faults. A different use
of models at runtime for system adaptation is taken in [58]. The authors update
the model based on execution traces of the system. In [73] the authors describe a
methodology for estimation of model parameters through Kalman filtering. This
work is based on a continuous monitoring that provides run-time data feeding a
Kalman filter, aimed at updating the performance model.

In [66], the authors propose a conceptual model dealing with changes in
dynamic software evolution. Besides, they apply this model to a simple case
study, in order to evaluate the effectiveness of fine-grained adaptation changes
like service-level degrading/upgrading action considering also the possibility to
perform actions involving the overall resource management. The approach pro-
posed in [60] deals with QoS-based reconfigurations at design time. The authors
propose a method based on evolutionary algorithms where different design al-
ternatives are automatically generated and evaluated for different quality at-
tributes. In this way, the software architect is provided with a decision making
tool enabling the selection of the design alternatives that best fits multiple qual-
ity objectives. Menascé et al. [61] developed the SASSY framework for generating
service-oriented architectures based on quality requirements. Based on an initial
model of the required service types and their communication, SASSY generates
an optimal architecture by selecting the best services and potentially adding pat-
terns such as replication or load balancing. In [57] an approach for performance-
aware reconfiguration of degradable software systems called PARSY (Perfor-
mance Aware Reconfiguration of software SYstems) is presented. PARSY tunes
individual components in order to maximize the system utility with the con-
straint of keeping the system response time below a pre defined threshold.
PARSY uses a closed Queueing Network model to select the components to
upgrade or degrade.

In the area of service-based systems (SBS), devising QoS-driven adaptation
methodologies is of utmost importance in the envisaged dynamic environment in
which they operate. Most of the proposed methodologies for QoS-driven adapta-
tion of SBS address this problem as a service selection problem (e.g., [25,19,72]).
Other papers have instead considered service-based adaptation through work-
flow restructuring, exploiting the inherent redundancy of SBS (e.g., [30,39,41].)
In [20] a unified framework is proposed where service selection is integrated
with other kinds of workflow restructuring, to achieve a greater flexibility in the
adaptation.

19

7 Conclusions and Future Work

In this paper we focus on complex, evolvable, and adaptable software applications
that live in highly dynamic environments and yet need to provide service in a
dependable manner. These requirements affect the way software is designed and
operated at run time. The most striking consequence is that models should be
kept alive at run time to support a verification activity that extends to run time.

We envision three important directions for future work. First, it is important
to investigate how detected requirements violations at run time may drive self-
adaptation, to achieve autonomic behavior. In our research group, we achieved
some preliminary results for restricted cases of self-adaptation in [22,34], but
much remains to be done.

Another important research direction should investigate the methods that
fit the specific requirements of run-time verification. In this paper, we assumed
that the same verification procedures that are used at design time can also be
used at run time. This is of course often an unrealistic assumption. Because
run-time reactions that lead to self-adaptation are triggered by failures in re-
quirements verification, the time consumed by the verification procedure must
be compatible with the time limits within which a reaction must take place.
The model checkers available for requirements verification are not designed for
on-line use, but rather to explore design-time tradeoffs. Efficient verification al-
gorithms need to be developed to fully support run-time verification. An initial
step in this direction is explored in [29].

A third research direction in which we are currently engaging concerns the
mechanisms that must support the run-time reconfigurations that are produced
as a result of self-adaptation. Dynamic reconfiguration must occur dynamically,
as the application is running and providing service. The goal is to preserve
correctness and at the same time perform the change in a timely manner, without
disrupting the service. Our work is focusing on extending previous work by
Kramer and Magee [50], which was further extended by [70].

Appendix: BPEL Overview

BPEL, Business Process Execution Language, is an XML-based workflow lan-
guage conceived for the definition and the execution of service compositions.
BPEL processes comprise variables, with different visibility levels, and the work-
flow logic expressed as a composition of elementary activities. Activities comprise
tasks like: Receive, Invoke, and Reply that are related to the interaction with
other services. Moreover it is possible to perform assignments (Assign), throwing
exceptions (Throw), pausing (Wait) or stopping the process (Terminate).

Branch, loop, while, sequence and switch constraints manage the control flow
of BPEL processes. The pick construct is peculiar to the domain of concurrent
and distributed systems, and waits for the first out of several incoming messages,
or timer alarms to occur, to execute the activities associated with such an event.
Each scope may contain the definition of the several handlers: (1) an Event

20

Handler that reacts to an event by executing a specific activity, (2) a Fault
Handler catches faults in the local scope, and (3) a Compensation Handler aimed
at restoring the effects of a previously unsuccessful transaction. For a complete
description of BPEL language see [2,?]. The graphical representation used in
this paper is described earlier in Section 2.

Acknowledgments

This research has been partially funded by the European Commission, Pro-
gramme IDEAS-ERC, Project 227977-SMScom.

References

1. Wosp : Proceedings of the international workshop on software and performance,
1998-2008.

2. A. Alves, A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, Ster-
ling, D. König, V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu.
Web services business process execution language version 2.0. OASIS Committee
Draft, May 2006.

3. D. Ardagna, C. Ghezzi, and R. Mirandola. Rethinking the use of models in soft-
ware architecture. In 4th International Conference on the Quality of Software-
Architectures, QoSA 2008, volume 5281 of LNCS, pages 1–27. Springer, 2008.

4. A Aziz, V. Singhal, and F. Balarin. It usually works: The temporal logic of stochas-
tic systems. In Pierre Wolper, editor, Proc. 7th International Conference on Com-
puter Aided Verification, CAV 95, volume 939 of LNCS, pages 155–165. Springer,
1995.

5. C. Baier, J-P. Katoen, and H. Hermanns. Approximate symbolic model checking
of continuous-time markov chains. In Jos C. M. Baeten and Sjouke Mauw, editors,
Proc. 10th International Conference on Concurrency Theory, CONCUR 99, volume
1664 of LNCS, pages 146–161. Springer, 1999.

6. S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-based perfor-
mance prediction in software development: A survey. IEEE Trans. Software Eng.,
30(5):295–310, 2004.

7. L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. Validation of web
service compositions. IET Software, 1(6):219–232, December 2007.

8. L. Baresi, E. Di Nitto, and C. Ghezzi. Toward open-world software: Issue and
challenges. Computer, 39(10):36–43, 2006.

9. L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors for composed services. In
Proceedings of the 2nd international conference on Service oriented computing,
ICSOC ’04, pages 193–202, New York, NY, USA, 2004. ACM.

10. F. Baskett, K.M. Chandy, R.R. Muntz, and F.G. Palacios. Open, closed, and
mixed networks of queues with different classes of customers. Journal of the ACM,
22(2):248–260, April 1975.

11. S. Becker, L. Grunske, R. Mirandola, and S. Overhage. Performance prediction of
component-based systems - a survey from an engineering perspective. In Archi-
tecting Systems with Trustworthy Components, volume 3938 of Lecture Notes in
Computer Science, pages 169–192. Springer, 2006.

21

12. S. Becker, H. Koziolek, and R. Reussner. Model-based performance prediction with
the palladio component model. In WOSP ’07: Proceedings of the 6th International
Workshop on Software and Performance, pages 54–65, New York, NY, USA, 2007.
ACM.

13. S. Bernardi, J. Merseguer, and D.D. Petriu. Adding dependability analysis capabil-
ities to the MARTE profile. In Model Driven Engineering Languages and Systems,
11th International Conference, MoDELS 2008, Toulouse, France, September 28 -
October 3, 2008. Proceedings, MoDELS, volume 5301 of Lecture Notes in Computer
Science, pages 736–750. Springer, 2008.

14. M. Bertoli, G. Casale, and G. Serazzi. The jmt simulator for performance evalu-
ation of non-product-form queueing networks. In Annual Simulation Symposium,
pages 3–10, Norfolk,VA, US, 2007. IEEE Computer Society.

15. G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi. Queueing networks and Markov
chains: modeling and performance evaluation with computer science applications.
Wiley-Interscience New York, NY, USA, 1998.

16. F.P. Brooks. The mythical man-month: Essays on software engineering. Pearson
Education, 1975.

17. R. Calinescu. General-purpose autonomic computing. In Mieso K. Denko, Lau-
rence Tianruo Yang, and Yan Zhang, editors, Autonomic Computing and Network-
ing, pages 3–30. Springer, 2009.

18. R. Calinescu and M. Kwiatkowska. Using quantitative analysis to implement au-
tonomic it systems. In ICSE ’09: Proceedings of the 31st International Conference
on Software Engineering, pages 100–110, Washington, DC, USA, 2009. IEEE Com-
puter Society.

19. G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani. A framework for QoS-
aware binding and re-binding of composite web services. Journal of Systems and
Software, 81(10):1754–1769, 2008.

20. V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and R. Mirandola. Qos-
driven runtime adaptation of service oriented architectures. In ESEC/FSE 2009,
Proceedings, pages 131–140. ACM, 2009.

21. G. Casale, R. Muntz, and G. Serazzi. Geometric bounds: A noniterative analysis
technique for closed queueing networks. IEEE Trans. Comput., 57(6):780–794,
2008.

22. L. Cavallaro, E. Di Nitto, P. Pelliccione, M. Pradella, and M. Tivoli. Synthesizing
adapters for conversational web-services from their wsdl interface. In Proceedings of
the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’10, pages 104–113, New York, NY, USA, 2010. ACM.

23. B.H.C. Cheng, R. de Lemos, G. Giese, P. Inverardi, and J. Magee, editors. Software
Engineering for Self-Adaptive Systems [outcome of a Dagstuhl Seminar], volume
5525 of Lecture Notes in Computer Science. Springer, 2009.

24. A. Clark, S. Gilmore, J. Hillston, and M. Tribastone. Stochastic process algebras.
In 7th Intern. School on Formal Methods, SFM, volume 4486 of LNCS, pages 132–
179. Springer, 2007.

25. Ardagna D. and Mirandola R. Per-flow optimal service selection for web services
based processes. Journal of Systems and Software, 83(8):1512–1523, 2010.

26. E. Di Nitto, C. Ghezzi, A. Metzger, M.P. Papazoglou, and K. Pohl. A journey
to highly dynamic, self-adaptive service-based applications. Autom. Softw. Eng.,
15(3-4):313–341, 2008.

27. M.B. Dwyer, J.S. Avrunin, and J.C. Corbett. Property specification patterns for
finite-state verification. In Proc. 21th International Conference on Software Engi-
neering (ICSE99), pages 411–420. ACM Press, 1999.

22

28. I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Model evolution by run-
time parameter adaptation. In Proc. 31st International Conference on Software
Engineering (ICSE09), pages 111–121, Los Alamitos, CA, USA, 2009. IEEE Com-
puter Society.

29. A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time efficient probabilistic model
checking. In 33 International Conference on Software Engineering (ICSE11), ac-
cepted for publication.

30. Chafle G., P. Doshi, J. Harney, S. Mittal, and B. Srivastava. Improved adaptation
of web service compositions using value of changed information. In ICWS, pages
784–791. IEEE Computer Society, 2007.

31. S. Gallotti, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Quality prediction of
service compositions through probabilistic model checking. In QoSA, Quality of
Software Architecture, Lecture Notes in Computer Science. Springer, 2008.

32. S-W. Garlan, D.and Cheng, A-C Huang, B.R. Schmerl, and P. Steenkiste. Rainbow:
Architecture-based self-adaptation with reusable infrastructure. IEEE Computer,
37(10):46–54, 2004.

33. C. Ghezzi and S. Guinea. Run-time monitoring in service-oriented architectures.
In Test and Analysis of Web Services, pages 237–264. Springer, 2007.

34. C. Ghezzi, A. Motta, V. Panzica La Manna, and G. Tamburrelli. Qos driven
dynamic binding in-the-many. In QoSA, pages 68–83, 2010.

35. Carlo Ghezzi and Giordano Tamburrelli. Reasoning on non-functional requirements
for integrated services. In RE ’09: Proceedings of the 17th International Conference
on Requirements Engineering, Atlanta, USA, 2009.

36. V. Grassi. Architecture-based reliability prediction for service-oriented computing.
In Workshop on Architecting Dependable Systems, WADS, volume 3549 of LNCS,
pages 279–299. Springer, 2004.

37. V. Gruhn and R. Laue. Patterns for timed property specifications. Electr. Notes
Theor. Comput. Sci, 153(2):117–133, 2006.

38. L. Grunske. Specification patterns for probabilistic quality properties. In Robby,
editor, 30th International Conference on Software Engineering (ICSE 2008), pages
31–40. ACM, 2008.

39. H. Guo, J. Huai, H. Li, T. Deng, Y. Li, and Z. Du. ANGEL: Optimal Configuration
for High Available Service Composition. In IEEE International Conference on Web
Services (ICWS 2007), pages 280–287. IEEE Computer Society, 2007.

40. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

41. J. Harney and P. Doshi. Speeding up adaptation of web service compositions using
expiration times. In World Wide Web (WWW), pages 1023–1032. ACM, 2007.

42. A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism: A tool for auto-
matic verification of probabilistic systems. Proc. 12th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS06),
3920:441–444, 2006.

43. A. Immonen and E. Niemelä. Survey of reliability and availability prediction meth-
ods from the viewpoint of software architecture. Software and System Modeling,
7(1):49–65, 2008.

44. R. Jain. The Art of Computer Systems Performance Analysis–Techniques for Ex-
perimental Design, Measurement, Simulation, and Modeling. Wiley-Interscience,
1991.

45. J-P. Katoen, T. Kemna, I.S. Zapreev, and D.N. Jansen. Bisimulation minimisation
mostly speeds up probabilistic model checking. In Orna Grumberg and Michael

23

Huth, editors, Tools and Algorithms for the Construction and Analysis of Systems
TACAS 2007, Proceedings, volume 4424 of LNCS, pages 87–101. Springer, 2007.

46. J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward model checker. In
QEST, pages 243–244, Los Alamos, CA, USA, 2005. IEEE Computer Society.

47. J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE
Computer, 36(1):41–50, 2003.

48. T. Kerola. The composite bound method for computing throughput bounds in
multiple class environments. Performance Evaluation, 6(1):1–9, 1986.

49. S. Konrad and B.H.C. Cheng. Real-time specification patterns. In Gruia-Catalin
Roman, William G. Griswold, and Bashar Nuseibeh, editors, 27th International
Conference on Software Engineering (ICSE 05), pages 372–381. ACM Press, 2005.

50. J. Kramer and J. Magee. The evolving philosophers problem: Dynamic change
management. IEEE Trans. Softw. Eng., 16:1293–1306, November 1990.

51. M. Kwiatkowska. Quantitative verification: Models, techniques and tools. In Proc.
6th joint meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
pages 449–458. ACM Press, September 2007.

52. M.Z. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model check-
ing with PRISM: A hybrid approach. Int. Journal on Software Tools for Technology
Transfer(STTT), 6(2):128–142, August 2004.

53. M.Z. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for proba-
bilistic model checking. In Thomas Ball and Robert B. Jones, editors, Computer
Aided Verification, 18th International Conference, CAV 2006, Proceedings, volume
4144 of LNCS, pages 234–248. Springer, 2006.

54. M.Z. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods in System
Design, 29(1):33–78, 2006.

55. E. D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik. Quantitative Sys-
tem Performance: Computer System Analysis Using Queueig Network Models.
Prentice-Hall, 1984.

56. Caporuscio M., Funaro M., and Ghezzi C. Architectural issues of adaptive per-
vasive systems. In Graph Transformations and Model-Driven Engineering, pages
492–511, 2010.

57. Marzolla M. and Mirandola R. Performance aware reconfiguration of software
systems. In Computer Performance Engineering - 7th European Performance En-
gineering Workshop, EPEW 2010, Bertinoro, Italy, September 23-24, 2010. Pro-
ceedings, volume 6342 of Lecture Notes in Computer Science, pages 51–66. Springer,
2010.

58. S. Maoz. Using model-based traces as runtime models. IEEE Computer, 42(10):28–
36, 2009.

59. M.A. Marsan. Stochastic petri nets: an elementary introduction. In Advances in
Petri Nets, pages 1–29, Berlin - Heidelberg - New York, June 1989. Springer.

60. A. Martens, H. Koziolek, S. Becker, and R. Reussner. Automatically improve soft-
ware architecture models for performance, reliability, and cost using evolutionary
algorithms. In Proc. first joint WOSP/SIPEW international conference on Per-
formance engineering, pages 105–116, New York, NY, USA, 2010. ACM.

61. D.A. Menascé, J: M. Ewing, H. Gomaa, S. Malek, and J. P. Sousa. A framework for
utility-based service oriented design in sassy. In Proc. first joint WOSP/SIPEW
int. conf. on Performance engineering, pages 27–36, New York, NY, USA, 2010.
ACM.

24

62. B. Morin, O. Barais, J-M. Jézéquel, F. Fleurey, and A. Solberg. Models@ run.time
to support dynamic adaptation. IEEE Computer, 42(10):44–51, 2009.

63. Martin L. Puterman. Markov Decision Processes. Wiley, 1994.
64. F. Raimondi, J. Skene, and W. Emmerich. Efficient online monitoring of web-

service slas. In SIGSOFT FSE, pages 170–180. ACM, 2008.
65. S.M. Ross. Stochastic Processes. Wiley New York, 1996.
66. M. Salehie, S. Li, R. Asadollahi, and L. Tahvildari. Change support in adaptive

software: A case study for fine-grained adaptation. In EASE ’09: Proc. Sixth IEEE
Conf. and Workshops on Engineering of Autonomic and Autonomous Systems,
pages 35–44, Washington, DC, USA, 2009. IEEE Computer Society.

67. N. Sato and K.S. Trivedi. Stochastic modeling of composite web services for closed-
form analysis of their performance and reliability bottlenecks. In ICSOC, volume
4749 of Lecture Notes in Computer Science, pages 107–118. Springer, 2007.

68. K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic
systems. In Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided
Verification, volume 3576 of Lecture Notes in Computer Science, pages 266–280.
Springer Berlin Heidelberg, 2005.

69. R.N. Taylor, N. Medvidovic, and P. Oreizy. Architectural styles for runtime soft-
ware adaptation. In WICSA/ECSA, pages 171–180. IEEE, 2009.

70. Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt. Tranquility: A low
disruptive alternative to quiescence for ensuring safe dynamic updates. IEEE
Trans. Software Eng., 33(12):856–868, 2007.

71. L. Wang, N.J. Dingle, and W.J. Knottenbelt. Natural language specification of
performance trees. In Nigel Thomas and Carlos Juiz, editors, Proceedings of the
5th European Performance Engineering Workshop, EPEW 2008, volume 5261 of
LNCS, pages 141–151, 2008.

72. L. Zeng, B. Benatallah, A.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.
QoS-aware middleware for web services composition. IEEE Trans. Software Eng,
30(5):311–327, 2004.

73. T. Zheng, M. Woodside, and M. Litoiu. Performance model estimation and tracking
using optimal filters. 34(3):391–406, 2008.

