
Autotuning control structures for reliability-driven dyna mic binding

Antonio Filieri, Carlo Ghezzi, Alberto Leva and Martina Maggio

Abstract— This paper explores a formally grounded ap-
proach to solve the problem of dynamic binding in service-
oriented software architecture. Dynamic binding is a widely
adopted mean to automatically bind exposed software interfaces
to actual implementations. The execution of an operation on one
or another implementation, though providing the same result,
could turn out in different quality of service, e.g. due to failure
occurrence. Dynamic binding is thus of primary importance to
achieve what in the Software Engineering domain is called “self-
adaptiveness”, the capability to preserve a desired quality of
service, if this is feasible. It is important to reach this goal also in
the presence of environmental fluctuations – a route congestion
increase – or even abrupt variations – a server breakdown. A
quite general dynamic binding problem is here reformulated as
a discrete-time feedback control one, and the use of autotuning
techniques is discussed, extending previous research, in a view
to guaranteeing the desired quality of service without the need
for computationally-intensive optimisations.

I. I NTRODUCTION

Software systems nowadays are required to live in highly
dynamic environments. Deployment infrastructures, usage
profiles, and the behaviour of often crucial third-party com-
ponents, are subject to continuous and unpredictable changes.
Software is required to survive such changes maintaining the
required Quality of Service (QoS), by adapting its behavior
online to compensate possible environmental threats. Self-
adaptive software is therefore a growing research field in
Software Engineering [4].

Many proposed approaches are grounded on Service Ori-
ented Architectures (SOA), that is, software is built by
composing abstract services, that provide functionalities con-
tributing to the achievement of the global goal. Each abstract
service could be provided by multiple implementations. The
binding of a concrete implementation to the abstract service
is a key factor in the adaptation of SOA systems, and the
subject of this paper.

More specifically, the focus here is on the use of simple
but effective control-theoretical tools to support binding
decisions driven by “reliability”, defined as the probability
of successfully accomplishing an assigned task, whatever the
term “success” means in the particular application at hand—
e.g., it could mean to enforce a response time compliant with
the service level agreement. The encountered problems can
be formulated as set point tracking ones in the presence of
disturbances, operating in the discrete time domain. Such an

A. Filieri, C. Ghezzi, A. Leva, Politecnico di Milano, Dipartimento
di Elettronica e Informazione, Via Ponzio 34/5, 20133 Milano, Italy,
{filieri,ghezzi,leva}@elet.polimi.it

M. Maggio, Department of Automatic Control, Lund
University, Ole R̈omers v̈ag 1, 223 63, Lund, Sweden,
martina.maggio@control.lth.se

approach requires an initial modelling effort, since that class
of systems does not appear – at least, at a first glance –
to be the most natural one. However, the resulting problem
formulation allows for significantly simpler solutions with
respect to alternatives such as Markov chains and/or queue
networks, without giving up on generality.

The companion paper [5] views the matter essentially from
the software engineering side, evidencing the mentioned
increased simplicity by means of a quite extensive review of
related work, and discussing various implementation-related
facts. This paper takes conversely the control engineering
point of view, recalling the major modelling aspect for
the reader’s convenience, and then concentrating on the
application of autotuning by discussing the technique choice
and the overall procedure structuring. Application examples
are finally described, where an autotuning mechanism is ap-
plied to both the two- and the multiple-alternatives dynamic
binding cases. Dynamic binding is the ability to route an
arriving request to different services that provide the correct
answer to the user. Using one service or another could
depend in principle on a variety of different reasons. To start,
the cost of the service can be taken into account; the load of
the service infrastructure can be another deciding variable;
the reliability of each service implementation is here taken
into account to offer an overall reliable experience to the end
user.

II. T WO-LEVEL DYNAMIC BINDING VIA THE

AUTOTUNING OF A SISODISCRETE TIME CONTROLLER

To address dynamic binding in its generality, it is conve-
nient to first break it down to its most elementary setting,
namely thetwo-level dynamic binding problem. This problem
can be formulated as follows: a certain serviceS has to be
provided, two software components (possibly operated by
third parties)s1 ands2 are available for that purpose. During
the execution the QoS of the two components may change.
This means that their reliability – in the sense of “success”
probability – may change over time, due to service failures,
overload and so forth. ServiceS should however offer a
certain reliability levelR for its clients, whenever possible.
The goal is thus to dynamically distribute the requests for
S betweens1 and s2 so as to attainR, if feasible, and
in the opposite case, to get as close as possible toR. To
model this scenario, in the Software Engineering field, it is
common to adopt a convenient Markov Chain, as the one
in Figure 1, where requests enter the system at the initial
nodeni (representing the entry point of the serviceS), with
a rate ofwi requests per time unit, and are then routed to
either of two implementations,s1 ands2. Each nodes j has a



success probabilityps j, and thus a failure onep f j = 1− ps j.
Nodesn f andns represent the failure and the success state,
corresponding to the happening of a failure or the successful
completion of the task respectively. The control objectiveis
to continuously adaptp1 , to match or overcome an overall
reliability goal (which is the global probability of reaching
state ns from state si). It is assumed – consistently with

ni

s1

s2

n f

ns

p1

p2

p f 1

ps1

p f 2

ps2

1

1

Fig. 1: Model representation for the basic load balancing
example.

common practice – that reliabilityR is measured periodically,
eachTs time units. The choice is here made to handle the
problem with a discrete-time controller of sampling period
Ts, and thus the first task to carry out is to devise, in this
setting, a convenient model of the process to be controlled.
Notice that, one can generalise the proposed case study to
the n-level dynamic binding problem, where the choice is to
be made among more than two components, the interested
reader is referred to [5] and the papers quoted therein for an
extensive problem formulation.

In the rest of this manuscript, first the two-level case is
treated, introducing the used modelling and control frame-
work without loss of generality; then, building on the found
solution, the n-level extension is dealt with.

A. The controlled system’s model

Assume, quite realistically, that each node is endowed with
a request queue, thus the number of requests in all the queues
is the controlled system’s state vectorn(k). One dispatch
probability – in the example,p1(k) – is the control variable,
while input rates – in the example the solewi(k), but his
causes no generality loss – act as disturbances; the controlled
variable is the overall reliability. Other probabilities –in the
example,ps1 and ps2 are considered time-varying parame-
ters. Also, suppose thatps1 and ps2 undergo variations that
viewed theTs time scale are modest and slow, interspersed
with large and abrupt – but sporadic – changes caused e.g. by
node failures. Thus, quite accurate estimates ofps1 and ps2

are most frequently available based on the observed nodes’
success and failure rates, said estimates becoming highly
unreliable only in the presence of the mentioned sporadic
events. Finally, suppose that each nodei has a maximum
throughput oftmi requests per control step of lengthTs.

Denoting bym the number of nodes in the chain – five
in the example – the (SISO) controlled system has the state

equation

n(k) = n(k−1)− r(k−1)
+P(k−1) · r(k−1)+w(k−1)

r(k) = min{tm,n(k)}
(1)

where boldface letters denote vectors. Each element ofw is
the number of requests entering the corresponding node in
the control step. Vectorn = [νi ν1 ν2 νs ν f ]

′ is the state, while
vector r contains the number of requests served by all the
nodes at timek, tm being the vector of the maximum node
throughputs (possibly different for each node). MatrixP is
finally the transition matrix of the chain. For the case of
Figure 1,P takes the form

P(k) =





0 0 0 0 0
p1(k) 0 0 0 0

1− p1(k) 0 0 0 0
0 1− ps1 1− ps2 1 0
0 ps1 ps2 0 1




(2)

while definingy = νs, the controlled system’s output equation
is

y(k) = Cn(k) =
[

0 0 0 0 1
]
n(k). (3)

For the moment, suppose thatps1 and ps2 are constant,
for example at the values stipulated with the nodes via
Service Level Agreements (SLAs). In this case (1,3) is a
time-invariant SISO model, hereinafter indicated withM ,
that however is nonlinear owing to the rate saturation and to
an input-by-state product observed in (1).

To complete the model, it is necessary to represent the
measurement dynamics, i.e., the output-to-metric modelMm

cascaded to the “physical” system’s oneM . Expressing the
measured reliability as

q(k) =
νs(k)−νs(k−1)

νs(k)+n f (k)−νs(k−1)−ν f (k−1)
(4)

i.e., as the percentage of successful requests in the last
control step,Mm is a system with inputum and statexm

both given byy, having the (linear) equation

xm(k) = um(k−1) (5)

as the state one, and (4) as the (nonlinear) output one. Given
the assumptions made on parameter changes, the problem is
naturally cast – except for when an abrupt event occurs – in
the framework of control in the vicinity of an equilibrium
for a system with moderate and slow variability,

ObservingM , it can be however verified that no equilib-
rium exists. This is correct, since output nodes apparently
accumulate served requests indefinitely. If thus the equilib-
rium search is repeated neglecting said accumulation, i.e.,
replacingP with the reduced matrix

Pred =





0 0 0 0 0
p1 0 0 0 0

1− p1 0 0 0 0
0 1− ps1 1− ps2 0 0
0 ps1 ps2 0 0




(6)



then an equilibrium is found as

n = [ν i ν1 ν2 νs ν f ]
′ = (I −Pred(u))−1d

=





1
p1

1− p1

p1(1− ps1)+(1− p1)(1− ps2)
p1ps1 +(1− p1)ps2




wi

(7)

if this satisfies the maximum throughput constraints, whilein
the opposite case there is no equilibrium because at least one
queue grows indefinitely. Notice that (7) holds also for the
original systemM , under the same feasibility hypothesis,
just (re-)defining the reliability in the last control period by
replacing (4) with

q(k) =
νs(k)

νs(k)+ν f (k)
. (8)

This re-definition also makesM algebraic, so that the
complete linearised model is






δn(k) = Aδn(k−1)
+Buδu(k−1)+Bdδd(k−1)

δq(k) = Cmδn(k)
(9)

where

Cm = DmC

=
[

0 0 0
ν f

(νs+ν f )2 − νs
(νs+ν f )2

]
.

(10)

The transfer function fromδ p1 to δq is thus readily
computed as

P(z) = Cm (zI −A)−1Bu

= ν1
νs(ps2− ps1)−ν f (p f 2− p f 1)

(νs +ν f )2

1

z2

(11)

and with trivial computations it reduces to

P(z) =
ps2− ps1

z2 . (12)

This reveals that the structure of the controlled dynamics is
invariantly that of a two-steps delay, where however the sign
of the gain may change. Assuming – it is worth stressing –
that parameter variations are small and slow with respect
to Ts, and that reliable estimates for said parameter are
available, one can thus reason for control as follows:

• if estimates foresee no gain sign modification, apply
a simple fixed-parameter controller suitably (auto)tuned
when a new operating condition (i.e., a new desired reli-
ability) is established, if the transient from the previous
to the new condition did not prove satisfactorily shaped
(plenty of methods for retuning necessity detection are
available in the literature, see e.g. [3]);

• if conversely the gain is “dangerously” approaching zero
– i.e., if binding variations loose efficacy as with equal
success probabilities no routing modification can alter
the overall reliability – refrain from altering the routing
until a “sufficiently nonzero” gain is forecast, and then
re-tune the controller.

B. Controller tuning

The requirement of reaching at least a reliability level
of q̄ in [0,1] at time k can be attained by a feedback
controller aiming at a reliability set point ¯q(k), typically set
slightly above ¯q to accommodate for the unavoidable small
fluctuations at operation time. Zero steady-state error anda
high degree of stability can be achieved by a PI controller,
here written as

ui(k) = ui(k−1)+a(1−b)e(k−1)
p1(k) = ui(k)+ae(k)

(13)

wheree(k) = q̄(k)−q(k) is the error. Oncea andb are cho-
sen, the Jury criterion [10] reveals that asymptotic stability
of the closed-loop system composed of (12) and (13) holds
for any valued of ps2− ps1, obviously in the range(−1,1),
such that






1−abd

1+abd
> 0

(a2b2d2−abd +ad −1)(a2b2d2 +abd −ad −1)

(1−abd1)(1+abd)
> 0

ad(1−b)(abd +ad +2)(a2b2d2−abd +ad −1)

a2b2d2 +abd −ad −1
> 0

(14)
Studying (14) it can be noticed that for a wide range of

(a,b) values, stability is preserved under the sole condition
ad > 0, thus that even relevant estimation errors ford do not
produce disrupting effects if at least the sign is caught (under
the assumptions above, remember). Of course, this is not true
for control performance: the time required to recover from a
disturbance can degrade significantly if the estimation ofd is
not good enough, for example, whence the need for retuning
if the detected error is too large.

Given the remarks just made, and also to allow the goal
to be attained by system administrators who quite often have
hardly any knowledge of control, an autotuning PI controller
is here employed. The reason why autotuning was preferred
to continuous adaptation resides in the type of encountered
variations (see again the considerations reported before), and
also in the lower computational effort. As anticipated, a
logic may be activated to force autotuning if the error is
“too large”, and requesting the operator’s intervention ifthe
tuning operation was not successful. In the used procedure,
autotuning is simply triggered when the integrated absolute
error, at constant set point, exceeds a pre-specified threshold,
which is quite common practice, or when a set point variation
causes a controlled variable overshoot that is by another
threshold bigger than the expected one (see below for the
meaning of “expected”). Here too, in any case see [3] for a
vast choice of alternative methods.

To choose the autotuning technique so as to structure
and finalise the procedure, the following considerations were
made. First, for a number of reasons too long to report
here but inessential for this particular paper, it is preferable
to keep the loop always somehow closed, thus relay-based



In
c
o
m
in
g
 r
e
q
u
e
s
ts

0

100

200

300

Time step

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(a) Entering requests

S1

S2

R
e
lia
b
ili
ty

0

0.2

0.4

0.6

0.8

1.0

Time step

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(b) Services reliabilities

Setpoint

Actual value

R
e
lia
b
ili
ty

0

0.2

0.4

0.6

0.8

1.0

Time step

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(c) Overall reliability

C
o
n
tr
o
l

0

0.2

0.4

0.6

0.8

1.0

Time step

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(d) Control probability

Fig. 2: Sample of the simulation tests for two-level control.

identification is used: in particular, to also avoid stepwise
stimuli, the (linearised) process frequency response point
with phase−π/2 is found with a relay-plus-integrator test.
Second, to quantify how “slightly above” the set point has to
be with respect to ¯q, reliable forecasts have to be provided
for the closed-loop controlled variable’s transients’ shape,
with particular reference to overshoots caused by set point
steps, and peak deviations caused by step-like disturbances.

The above remarks oriented the choice to the recently in-
troducedcontextual tuning relay-based autotuning approach
[9]. Details on that can be found in the quoted reference,
and are omitted here for brevity. Suffice to say that the
chosen autotuner provides the PI parameters and at the
same time a first-order model with delay that precisely
describes the process in the vicinity of the achieved cutoff
frequency, the model’s frequency response being exact at
that frequency. This apparently allows to reliably estimate
the main characteristics (peak and duration, typically) ofthe
closed-loop transients of interest.

In practice, denoting byN the number of samples (at
sampling timeTs) of the induced oscillation and byA the
measured magnitude of the process Nyquist curve point with
phase−π/2, (13) is tuned by setting

a =
2π tanϕm

ATs (2π +N tanϕm)
√

1+ tan2 ϕm

b =
N tanϕm

2π +N tanϕm

(15)

where ϕm is the desired phase margin in radians. As ex-
plained in the quoted reference, by just reformulating its
results in the discrete time, also an approximated process
model precise near the cutoff is obtained, that joined to the
tuned PI allows to forecast the closed-loop transients of the

controlled variable based on an estimated complementary
sensitivity function given by

T̂ (z) =
2π

Nzq −Nzq−1 +2π
(16)

whereq is the nearest integer to the quantityN(1/4−ϕm/2π)
—an acceptable approximation according to experience.
Also, the settling time of the so tuned closed loop is readily
estimated, in samples, as 5N/2π.

C. Validation tests

Prior to implementing the control policy in a real software
system, a simulation campaign was conducted in MATLAB;
a sample of the results is shown in Figure 2. The test spans
10000 steps, each node can serve a maximum of 100 requests
per step, and a reliability of 0.9 is desired. The initial failure
probability of the first service is 0.4, while that of the second
one is 0.1.

To see how the controller reacts to changes in the set
point, the simulations run is divided into three parts, and
the requested reliability is diminished to 0.8 in the second
one. Also, the success and failure probabilities of the services
were changed so as to divide the run in five parts, for example
simulating the failure of the first service between steps 2000
and 4000. Finally, the number of requests entering the system
is changed according to a predefined pattern. As can be
seen in Figure 2(c), and in many other tests here omitted,
the system is actually capable of withstanding the envisaged
upset whenever feasible, and in general also more severe
stimulations than the discussed theory rigorously allows to
consider acceptable.

III. E XTENSION TO N-LEVEL DYNAMIC BINDING

The two-level case just treated is naturally keen to become
the basic brick for a modular construction of then-level one.



To this end, consider the structure shown in Figure 3, where
the added “intermediate” nodes are fictitious, since they are
used only to compute the probabilities of routing from the
single input node to then possible targets.

p 1-p

p 1-p p 1-p

Level: n

Sampling Period: Ts(n)

Level: n-1

Sampling Period: Ts(n-1)

Cn

Ca(n-1) Cb(n-1)

Fig. 3: Example of n-level binding structure.

To ensure proper operation, tuning starts from the output
layer (that leading to the physical service nodes). Once all
that layer is tuned, which can be done simultaneously for all
its two-level blocks, the contextual tuning forecasts allow to
estimate the settling time for the entire layer as the maximum
among those of the blocks. The preceding layer is then tuned,
after modifying its sampling time to be a multiple of that for
the output layer, chosen as the smallest multiple greater than
the estimated common settling time.

Repeating the procedure up to the input node, a multirate
multivariable controller is therefore obtained. At present a
complete analysis of that scheme is still underway, thus no
rigorous guarantees on its characteristics are available nor
can one forecast any upper limit for the ratio between the
highest and the lowest sampling times. In all the encountered
cases, however, the scheme proved to work satisfactorily, and
no sampling time ratios were observed that are so large to
impair an effective operation of the overall system. Hence,
the so devised multirate control and tuning procedure seem to
naturally generalise to more complex selection trees, which
is the ultimate goal for the addressed application.

A. Validation tests

Also in this case, a couple of samples from a simulation
campaign is reported. More specifically, Figure 4 shows the
response of a five-level binder to a set point step variation
and its rapid convergence.

Figure 5 conversely shows the behaviour of a 4-level
binder subject to different stimuli. The effect of autotuining
operations is shown to evidence how acceptable the system
upset is. Specifically, the four services reliabilities are

av1 = 1− (0.4+0.6· st p(k−9000)−0.6· st p(k−9500)
+0.6· st p(k−7000)−0.6· st p(k−7500))

av2 = 1− (0.1+0.3· st p(k−2000)−0.3· st p(k−2500))
av3 = 1− (0.9+0.1· st p(k−2000)−0.15· st p(k−4500))
av4 = 1− (0.7+0.1· st p(k−1900)−0.1· st p(k−4400))

(17)

SetPoint

ActualReliability

R
e
lia
b
ili
ty

0.4

0.5

0.6

0.7

Time step

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 4: Step response of a 5-level binder.

SetPoint

ActualReliability

R
e
lia
b
ili
ty

0.5

0.6

0.7

0.8

0.9

Time step

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 5: Response of a 4-level binder with autotuning and
different stimuli.

whereavx is the availability (or reliability) of servicex and
st p is the step function. This results in the control objective
not being feasible in the interval between time step 2000 and
2500, as can be seen in the figure. Also, the input rate varies
according to

w1 = (25+15· st p(k−1000)−5· st p(k−2000)
+0.006· rmp(k−3000)−0.012· rmp(k−4000)
+0.006· rmp(k−5000)−15· st p(k−6000)
+25· st p(k−7000)+15· st p(k−7025)
−5· st p(k−9000)).

(18)

IV. A COMPLETE IMPLEMENTATION

To support the applicability of our approach we imple-
mented two different Java-based prototypes: a web applica-
tion based on Spring and a classic stand-alone application.

The web application has been developed in the Spring
Framework [1]. Spring is one of the most popular application
development framework for enterprise Java applications. The
purpose of this implementation is to show the impact of
moving existing enterprise projects toward our approach. We
assume an underlying service-oriented architecture [11],that
is, all the functionalities needed for the execution of the
software are conveniently grouped in functional components
that expose a web-service interface. An application may also
invoke services offered by third parties, e.g. may use the
map service from Google or Yahoo. The invocation of a



service may result in a correct execution or may lead to an
exception. Collections of success and failure events can be
processed through established statistical methods to online
estimate the current reliability of a service [7]. If two or
more implementations expose the same interface they are
functionally equivalent and any of the two can be used to
perform the exposed operations (e.g. we can assume that
the map service can be interchangeably gathered from either
Google or Yahoo). In this scenario, we assume as the driver
of choice the actual reliability of equivalent alternatives, and
we want to redirect the calls to either of them according to
a desired reliability for the abstract operation. In Springthis
can be done, for example, by exploitingaspect-orientation
capabilities of the framework. Aspect-Oriented Programming
(AOP) is a paradigm enabling an explicit separation of
concerns while developing software [8]. AOP is an effective
mean to implement our approach in a seamless way on
existing enterprise projects, with almost no impact on the
existing code but the addition of a new aspect. This allows
to delegate the application of the method to a single expert,
with low impact on the development cycle and project
management too. At present, in Spring we implemented the
autotunable 2-level case only, a screenshot of the running
implementation can be seen in Figure 6.

Fig. 6: Screenshot of the Spring implementation.

A stand-alone Java application has instead been developed
with Maven [2], a state-of-the-art project management and
comprehension tool developed by the Apache foundation.
Maven is based on the concept ofproject object model and
provides support for easy distribution and integration of the
developed artifacts. This is the fully-fledged implementation
of the concepts in this paper, supporting n-level autotuning
too. With this implementation we aim at providing a proof of

concept of the complexity of both coding and executing the
controllers in a general purpose environment. The same Java
code can be adapted to extend the Spring implementation
too. Both the implementations can be downloaded from [6],
as well as the Matlab scripts to reproduce our data.

V. CONCLUSIONS AND FUTURE WORK

This paper dealt with the problem of dynamic binding
in the context of software services composition, to satisfy
reliability requirements. The problem was formulated as a
discrete-time feedback control one, and autotuning tech-
niques were devised and applied, both in the two-level
and the n-level case, to guarantee the desired reliability
without the need for computationally-intensive optimisations
that could degrade the performance of the software system.
The proposed control strategy was validated through Matlab
simulations and subsequently implemented in Java within the
Spring framework, and as a standalone application. Experi-
mental results confirm the validity of the control solution in
matching the reliability requirements through dynamic bind-
ing. Future work will address different performance/quality
metrics, and the implementation of the designed solutions
in distributed environments hosting mutually related soft-
ware components. This will most likely lead to address the
problem by means of multivariable control methodologies,
thereby extending the research beyond the composition of
single-variable elements.

ACKNOWLEDGMENT

This research has been partially funded by the European
Commission, Programme IDEAS-ERC, Project 227977-
SMScom. This work was supported by the Swedish Research
Council through the LCCC Linnaeus Center.

REFERENCES

[1] http://www.springsource.org.
[2] http://maven.apache.org.
[3] Karl JohanÅström and Tore Ḧagglund. Advanced PID control. ISA

- the Instrumentation, Systems, and Automation Society, Research
Triangle Park, NY, 2006.

[4] L. Baresi, E. Di Nitto, and C. Ghezzi. Toward open-world software:
Issue and challenges.Computer, 39(10):36 –43, oct 2006.

[5] Anonio Filieri, Carlo Ghezzi, Alberto Leva, and MartinaMaggio.
Reliability-driven dynamic binding via feedback control. In Proc.
SEAMS 2012, page to appear, 2012.

[6] Antonio Filieri, Carlo Ghezzi, Alberto Leva, and Martina Mag-
gio. http://filieri.dei.polimi.it/publications/
2012-cdc.

[7] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. A formal
approach to adaptive software: continuous assurance of non-functional
requirements.Formal Aspects of Computing, pages 1–24, 2011.

[8] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Mehmet Aksit and Satoshi Matsuoka, editors,
ECOOP’97 Object-Oriented Programming, volume 1241 ofLNCS,
pages 220–242. Springer Berlin / Heidelberg, 1997.

[9] Alberto Leva, Sara Negro, and Alessandro V. Papadopoulos. PI/PID
autotuning with contextual model parametrisation.Journal of Process
Control, 20(4):452–463, 2010.

[10] Messaoud and Benidir. On the root distribution of general polynomials
with respect to the unit circle.Signal Processing, 53(1):75 – 82, 1996.

[11] R. Perrey and M. Lycett. Service-oriented architecture. InApplications
and the Internet Workshops, 2003. Proceedings. 2003 Symposium on,
pages 116 – 119, jan. 2003.


