
Reliability-Driven Dynamic Binding via Feedback Control

Antonio Filieri, Carlo Ghezzi, Alberto Leva

Dipartimento di Elettronica e Informazione, Politecnico di Milano

Piazza L. da Vinci, 32; 20133 Milano, Italy

{filieri, ghezzi, leva}@elet.polimi.it

Martina Maggio

Department of Automatic Control, Lund University

Ole Römers väg 1, 223 63, Lund, Sweden

{martina.maggio}@control.lth.se

Abstract—We are concerned with software that can self-
adapt to satisfy certain reliability requirements, in spite of
adverse changes affecting the environment in which it is
embedded. Self-adapting software architectures are heavily
based on dynamic binding. The bindings among components
are dynamically set as the conditions that require a self-
adaptation are discovered during the system’s lifetime. By
adopting a suitable modeling approach, the dynamic binding
problem can be formulated as a discrete-time feedback control
problem, and solved with very simple techniques based on
linear blocks. Doing so, reliability objectives are in turn
formulated as set point tracking ones in the presence of
disturbances, and attained without the need for optimization.
At design time, the proposed formulation has the advantage
of naturally providing system sizing clues, while at operation
time, the inherent computational simplicity of the obtained
controllers results in a low overhead. Finally, the formulation
allows for a rigorous assessment of the achieved results in both
nominal and off-design conditions for any desired operation
point.

Keywords-Self-adaptive software; reliability requirements;
dynamic binding; discrete-time feedback control

I. INTRODUCTION

Modern software systems live in highly dynamic environ-

ments and must survive changes while they are operational.

Changes may occur because the requirements they should

satisfy evolve over time. They may also occur because

the environment in which the system is embedded changes

and the environment assumptions made when the system

was originally defined—and upon which design decisions

affecting the implementation were made—are not valid any

more, and lead to requirements violations. In these cases,

self-adaptation becomes a key goal for the implementation.

If the system can self-adapt at run-time to achieve contin-

uous requirements satisfaction, it can run continuously and

continuously provide service. This is, in turn, a requirement

that many modern systems must satisfy.

From a very abstract viewpoint, self-organization at the

software architecture level must leverage dynamic binding

among the components of the architecture. Dynamic binding

is the enabling feature that supports dynamic configurations.

In this paper, we explore how continuous reconfigurations

through dynamic binding can be obtained as the solution

of a discrete-time feedback control problem. The software

system may be viewed as a broken down into constituent

blocks having no hard-wired connectors. Connectors re-

sult dynamically when the binding between two blocks is

established. Our final goal is to apply control theory to

automatically derive how the bindings must evolve over time

to achieve self-adaptation. The changes that may lead to

new bindings are treated as disturbances in control theory

terminology.

The aforementioned abstract viewpoint is specialized in

this paper to the context of requirements that specify the

expected quality of service. (QoS). Even more specifically,

we will focus on the reliability requirements that the system

as a whole must satisfy. Reliability is here broadly defined

as the probability of successfully accomplishing an assigned

task when it is requested. The meaning of success is do-

main dependent. We give to the term a pretty wide scope,

which can be summarized by stating that the execution of

the task satisfies convenient properties: e.g., it has been

completed without exceptions, within an acceptable time-

out, occupying less than a certain amount of memory, etc.

We also position this work in a setting where the system we

build is a composition of parts that are quite autonomous,

possibly developed and managed by independent entities,

as in the case of service-oriented systems. The independent

parts are characterized by their own reliability properties,

which concur to the reliability of the composition defined

by the established bindings in place at any given time.

To address the dynamic binding problem in its full gener-

ality, as it was stated above, we need to narrow it down first

to its most elementary setting. This is exactly the purpose of

this paper. The most elementary problem frame we need to

study is what we call the two-alternatives dynamic binding

problem. The problem can be formulated as follows: We

need to provide a certain service S, and two components

C1 and C2 are available which provide that service, each

exhibiting a varying QoS. Their reliability may for example

change over time because of changes in the load conditions

of the host on which they run. Service S must satisfy certain

reliability requirements R for its clients. The solution is to

dynamically distribute the requests for service S among C1
and C2 (i.e., to follow a certain dynamic binding law) in

such a way that we satisfy the requirements R. If this is not

feasible, the solution ensures that we get as close as possible

to R. Once this elementary problem frame is solved in the



control theory framework, we show how we can generalize

it to the case in which the choice is among any number of

components, C1, C2, ... CN . This binding problem is the

basis upon which the mode general setting can be addressed.

The paper is organized as follows. Section II starts by for-

mulating the addressed problem as a discrete-time dynamic

control one, detailed as set point tracking in the presence of

disturbances. A suitable feedback controller structure is then

devised, attaining the desired objectives and allowing for the

assessment of local stability and robustness in the vicinity of

a generic operation point. An automatic procedure is finally

devised to determine the controller parameters on line, once

its structure is dictated by the performed (off line) analysis,

and the used dynamic models are employed to validate the

control by extensive simulation. A two-alternatives case is

used in section II for simplicity, while section III extends

the obtained results to the n-alternatives case. Section IV

discusses implementation issues concerning the application

to service-oriented and Java-based applications. Section V

presents related work and Section VI concludes the paper.

II. TWO-ALTERNATIVES ONLINE DYNAMIC BINDING

Dynamic binding is the native elementary mechanism

that enables dynamic architectural reconfigurations, through

which one can achieve the required QoS levels by adapting

the application to changing and variable user behaviors

and environmental conditions. This section explains how

dynamic binding can be treated as a discrete-time feedback

control problem, by going through the typical control syn-

thesis approach. In our initial formalization, the problem is

reduced to the dynamic decision of directing requests to

one out of two possible servers (two-alternatives dynamic

binding), with the goal of optimizing the satisfaction of

reliability requirements. To achieve this goal, first, a (pos-

sibly simplified) dynamic model of the uncontrolled system

is written and described in Section II-A. Subsequently, a

regulator is designed to fulfill the required goals, as shown

in Section II-B. The analytical formulation of the controller

allows rigorous convergence analysis to be performed on

the closed-loop system. The avoidance of oscillations, biases

and unnecessary extra quality – that would be costly – is a

result of this modeling and synthesis process.

A. The Modeling Paradigm

The case study used to present the method is shown in

Figure 1, where requests enter the system through the initial

node ni, at rate wi, and are then re-routed to different nodes

to be served – in this basic case just two service nodes are

presented, marked with s1 and s2. Each service node sj has

a success probability psj , thus a failure one pfj = 1− psj .

The control objective is to continuously adapt the probability

p1 of routing to s1, thus also the probability p2 = 1 − p1
of routing to s2, to match or overcome an overall reliability

goal. Nodes nf and ns respectively represent the failure and

the success state.

ni

s1

s2

nf

ns

p1

p2

pf1

ps1

pf2

ps2

1

1

Figure 1. Model representation for the basic load balancing example.

The controller is supposed to act periodically, at a fixed

time step (or sampling period) Ts chosen as the period on

which reliability needs to be quantified. Once Ts is selected

based on the particular problem at hand, the treatment can

be performed entirely in the discrete-time domain, that is,

introducing a time index k that counts the controller inter-

ventions, and interpreting any quantity x(k) “at (discrete)

time k”, whatever x is, as the value of x in the (continuous)

time span from kTs to (k + 1)Ts, when a new value will

become available.

Furthermore, each node j is supposed to encompass a

request queue. In system-theoretical terms each queue is

called a storage, and the values of all storages at time k
(i.e., the number νj of requests in each queue j1) form the

controlled system’s state vector n(k). Also, any quantity that

is exogenous for the controlled system is termed an input.

Inputs can either be a control variable if the controller can

prescribe it – in the example, the manipulated probability

p1(k), or a disturbance if the controller can possibly measure

it, but not prescribe it – in the example, the input rate wi(k).
Finally, any other quantity pertaining to the system – in

the example, ps1 and ps2 – is referred to as a parameter.

Parameters can be constant over time and known, leading to

a time-invariant system without uncertainty. Also, they can

be constant over time but only known as nominal values,

providing a time-invariant system with uncertainty. Also,

parameters may vary over time, resulting in a time-varying

system. In the case of uncertain or varying parameters, there

may or may not be the possibility of estimating their current

values on-line, based on the available measurements.

For the considered case study, we suppose that ps1 and ps2
are “moderately varying with sporadic steps”, i.e., that their

value undergoes, in each control step of duration Ts, only

small variations around a nominal value, while from time

to time – but sporadically with respect to the control steps

– there may be a single, large and abrupt variation. This

models for example the case of a node failure, whenever

1Notice that only the length of the queue matters in our model; i.e. the
possible parameters carried as part of the requests can be ignored.



a service node may not be available for some time due to

external and a priori unpredictable causes. We also suppose

that ps1 and ps2 can be estimated by observing the service

nodes’ success and failure rates. As a last hypothesis, each

node j is supposed to have a maximum throughput of

tmj requests per control period of length Ts. Given these

assumptions, we can now write models for the system.

1) The Controlled System’s Model: To obtain a control-

theoretical model of the system to be controlled, one first

needs to write its state equations, i.e., to express the state

at time k as a function of the state and the inputs at time

k−1. In a previous work this was done starting from Discrete

Time Markov Chain (DTMC) models [1], while here the

formalism is extended to consider the queuing mechanism

induced by the throughput saturation. Denoting by m the

number of nodes in the chain – in the example m = 5 - the

state equations are

n(k) = n(k − 1)− r(k − 1)
+P(k − 1) · r(k − 1) +w(k − 1)

r(k) = min{tm,n(k)}
(1)

where bold letters denote vectors. Each element of w

represents the number of requests entering the corresponding

node in the control step: in our case study there is only one

entry point, thus w = [wi 0 0 0 0]
′, but the model already

takes into account the possibility of having multiple ones (it

would suffice that w had more than one nonzero element).

Vector n = [νi ν1 ν2 νs νf ]
′ is the state, while r represents

the number of requests actually served by each node at time

k, which is the minimum between the number of enqueued

ones and tm, the vector of maximum node throughputs.

Each node is supposed to have a possibly different maximum

throughput, taking into account the differences in the imple-

mentations and capacity of each component of the chain.

Finally, P is the transition matrix of the chain, that for the

case study of Figure 1 takes the form

P(k) =













0 0 0 0 0
p1(k) 0 0 0 0

1− p1(k) 0 0 0 0
0 1− ps1 1− ps2 1 0
0 ps1 ps2 0 1













(2)

where for the moment ps1 and ps2 are supposed constant,

although this assumption will be relaxed. In other words,

default values could be assumed for the probability of

success and failure of the service nodes, for example based

on Service Level Agreements.

The next modeling step is to write the output equation,

instantaneously relating the quantities needed to produce the

metric(s) of interest – here, reliability – to the system state

(and possibly, which does not happen here, its input). Said

quantities – the system output in control-theoretical terms –

are νf and νs, thus defining y = [νf νs]
′, the output equation

is

y(k) = Cn(k) =

[

0 0 0 1 0
0 0 0 0 1

]

n(k) (3)

This makes (1,3) a time-invariant nonlinear model – M
from now on – owing to the rate saturation and to an input-

by-state product – the term P · r in (1) – that causes the

state equation not to be linear in both the state and the input

vectors (while the output equation apparently is).

Finally comes the measurement dynamics, i.e., the output-

to-metric relationship cascaded to the system model. Assum-

ing – quite naturally – that the measured reliability q be

expressed as

q(k) =
νs(k)− νs(k − 1)

νs(k) + nf(k)− νs(k − 1)− νf (k − 1)
, (4)

which means that the measured reliability is the percentage

of successful requests in the last time interval, the measure-

ment dynamics is described by a system with input um and

state xm both given by y, the state equation

xm(k) = um(k − 1), (5)

and the output equation (this time containing the input) given

by (4). Also model (4,5) – Mm from now on – is nonlinear,

owing in this case to the output equation only.

2) The Linearized Model: Since the required reliability

is assumed to vary sporadically, the problem is naturally

cast in the framework called control in the vicinity of an

equilibrium, indicating that the system needs to be brought to

the equilibrium first and subsequently kept in its proximity.

In this case it is possible to first analyze the equilibria of the

system for constant inputs, and then obtain a linear model

for it valid in the vicinity of the generic equilibrium. Finally

a controller suitable for any equilibrium is devised. More

precisely, we write a different controller parametrization for

any equilibrium in the vicinity of which the system needs

maintaining.

Observing that M and Mm are cascaded, it is convenient

to treat them separately, and then join the results. Starting

with M, equation (1) can be written in the form

n(k) = Φ (n(k − 1),u(k − 1),d(k − 1)) (6)

where u = p1 is the input and d = wi the disturbance. As-

suming to receive constant inputs u and d, the corresponding

equilibrium states n are the solutions of

n = Φ
(

n,u,d
)

(7)

that, specialized to our case, becomes

(P(u)− I)min{tm,n}+ [wi 0 · · · 0]
′

= 0 (8)

where I represents the identity matrix.

Matrix P(u)−I is structurally singular, and it can be ver-

ified that no equilibrium exists. This is correct, as the output



nodes in Figure 1 apparently accumulate (served) requests

indefinitely. If however one repeats the equilibrium search

neglecting the output nodes accumulation, i.e., replacing for

this modeling purpose P with the reduced matrix

Pred =













0 0 0 0 0
p1 0 0 0 0

1− p1 0 0 0 0
0 1− ps1 1− ps2 0 0
0 ps1 ps2 0 0













, (9)

then an equilibrium is always found as

n = [νi ν1 ν2 νs νf ]
′ = (I − Pred(u))

−1
d

=













1
p1

1− p1
p1(1− ps1) + (1− p1)(1− ps2)

p1ps1 + (1− p1)ps2













wi
(10)

if this satisfies the maximum throughput constraints, i.e., if

r = n. In the opposite case there is clearly no equilibrium, as

one or more queues will grow indefinitely if a non-feasible

number of requests are injected into the system. Notice that

the equilibrium (10) is valid also for the original system,

under the same feasibility hypothesis, by just interpreting

νs and νf as the successful and failed requests in the last

period, thus (re-)defining the reliability in the same period

as their ratio by replacing (4) with

q(k) =
νs(k)

νs(k) + νf (k)
(11)

Defining δn = n − n, δu = u − u, δd = d − d and

δy = y−y, the linearized model of the system (with matrix

Pred in accordance with the interpretation above) is






δn(k) = Aδn(k − 1)+
Buδu(k − 1) +Bdδd(k − 1)

δy(k) = Cδn(k)
(12)

where

A = ∂Φred

∂n

∣

∣

n,u,d
, Bu = ∂Φred

∂u

∣

∣

n,u,d
,

Bd = ∂Φred

∂d

∣

∣

n,u,d

(13)

are respectively the Jacobian matrices of Φred (same ex-

pression as Φ with P replaced by Pred) with respect to n,

u and d, computed at the equilibrium, and C is defined by

equation (3). Matrix A simply (and expectedly) equals P ,

while

Bu =
[

0 ν1 −ν1 0 0
]

′

,

Bd =
[

1 0 0 0 0
]

′

.
(14)

Coming to Mm, the re-definition of q given by (11)

makes it merely algebraic, any constant input um yielding

an equilibrium output q = νs/(νs + νf ). Then, following

the same procedure used for the output equation of M, the

linearized (algebraic) model of Mm is

δq(k) = Dmδum(k) (15)

where δum = um − um, δq = q − q, and

Dm =
[

νf

(νs+νf )2
− νs

(νs+νf )2

]

. (16)

Putting it all together, the complete linearized model is

then






δn(k) = Aδn(k − 1)
+Buδu(k − 1) +Bdδd(k − 1)

δq(k) = Cmδn(k)
(17)

where

Cm = DmC

=
[

0 0 0
νf

(νs+νf )2
− νs

(νs+νf )2

]

.
(18)

Based on (17), the z-domain transfer function from δp1
to δq is readily computed as

P (z) = Cm (zI−A)
−1

Bu

= ν1
νs(ps2 − ps1)− νf (pf2 − pf1)

(νs + νf )2
1

z2
(19)

that bringing in all the relationships among the involved

quantities, simply reduces to

P (z) =
ps2 − ps1

z2
(20)

and reveals some control-relevant facts. First, the gain is

the difference of the service nodes’ success probabilities,

thus (correctly) zero if they are equal, since in that case no

routing action can alter the overall reliability. Second, and

most important, the structure of the controlled dynamics is

invariantly that of a two-steps delay, allowing for a simple

control law as that employed in the following. On the other

hand, since the sign of the controlled system’s gain can

change, most likely no single controller parametrization will

be suitable for all situations, and an on-line estimation of

the service nodes success probabilities is required. Notice

however, that in general, the only estimation needed is the

sign of the mentioned difference.

B. Control Synthesis

The requirement of reaching at least a reliability level of

q̄ in [0, 1] at time k can be expressed as

q(k) ≥ q̄ (21)

and for the example of Figure 1 the number νs of success-

fully served requests and the number νf of failures experi-

enced are represented by elements of the vector n(k). The

simplest way to attain such a goal in a control-theoretical

manner is to design a feedback controller that at each step k
computes the control signal – in the example, p1(k) – based

on the desired reliability q̄(k) – typically set slightly above



the desired threshold to accommodate for the unavoidable

small fluctuations at operation time – and its measured value

q(k). Based on equation (20) and an analysis too long to

report here, it can be concluded that zero steady-state error

and a high degree of stability can be achieved by the PI

(Proportional plus Integral) controller

ui(k) = ui(k − 1) + a(1− b)e(k − 1)
p1(k) = ui(k) + ae(k)

(22)

where e(k) = q̄(k)−q(k) is the error. Notice that u is in this

case the control signal, therefore the probability of routing

to a specific service. The reader interested in additional

information on PI(D) control can refer e.g. to [2] and the

vast bibliography provided therein.
Coming back to the addressed problem, the Jury criterion

[3] reveals that once a and b are chosen, asymptotic stability

of the closed-loop system composed of (20) and (22) holds

for any value d of the difference ps2− ps1, obviously in the

range (−1, 1), such that



























1− abd

1 + abd
> 0

(a2
b
2
d
2
− abd+ ad− 1)(a2

b
2
d
2 + abd− ad− 1)

(1− abd1)(1 + abd)
> 0

ad(1− b)(abd+ ad+ 2)(a2
b
2
d
2
− abd+ ad− 1)

a2b2d2 + abd− ad− 1
> 0

(23)

Studying (23) it can be noticed that for a wide range of

(a, b) values, stability is preserved under the sole condition

ad > 0, thus that even relevant estimation errors for d do not

produce disrupting effects if at least the sign is caught. Of

course, this is not true for control performance: for example,

the time required to recover from a disturbance can degrade

significantly if the estimation of d is not good enough.

C. Auto-Tuning

One could relate the previously defined a and b to d
and some performance specification. However, this does

not seem a user-friendly approach. Therefore, to facilitate

usability, an auto-tuning mechanism was introduced, as

shown in the block diagram of Figure 2. The purpose of

the auto-tuning mechanism is to automatically update the

controller parameters to the current conditions. This means

that if the reliabilities of the different services radically

change, the parameters of the controller need to be tuned

accordingly. In fact, as previously stated, the sign of the

differences between ps2 and ps1, i.e., the sign of d, is crucial

for the control procedure.
To this end, a procedure is introduced to select the PI

parameters. The discrete-time transfer function (20) is re-

interpreted as continuous-time and sampled at period Ts,

yielding:

Pc(z) = d e−2Ts s, Rc(s) = K

(

1 +
1

sTi

)

(24)

1

s

Rc(s)

Pc(s)
q̄ +

Normal (control) mode

Autotuning mode

p1 q

−

Figure 2. Basic scheme for relay-based (PI) auto-tuning.

where s is the Laplace transform complex variable, d is the

difference defined above, and

a = K

(

1 +
Ts

Ti

)

, b =
Ti

Ti + Ts

. (25)

The applied methodology is based on relay feedback, see

e.g. [4] for background material. More in detail, by replacing

the feedback controller with a relay cascaded to an integra-

tor, the point of the frequency response Pc(jω) – where

j is the imaginary unit and ω the frequency – with phase

−90◦ is easily found from the characteristics (frequency

and amplitude) of the sustained oscillation induced on the

controlled variable. This technique, commonly referred to

as relay feedback identification, is known to provide useful

auto-tuning information rapidly and with a very modest

system upset. Once the mentioned frequency response point

is determined, taking as control specification a desired phase

margin ϕm (in degrees), the parameters of Rc in (24) – thus

a and b via (25) – are obtained by solving the complex

equation

Rc(jω) · Pω e−j90◦ = ej(180
◦
−ϕm) (26)

where ω is the oscillation frequency, and Pω the correspond-

ingly measured frequency response magnitude, see e.g. [5]

for details that would stray from the scope of this work.

Suffice to say that parameter ϕm is of course positive and

less than 90◦, that lower values privilege response speed

versus absence of oscillations and degree of stability, that

higher values do the reverse, and that in virtually any case

60◦ is a reasonable default value.

For the convenience of non-specialist users, one could

then provide a “desire knob” graduated from 0 to 1, 0

corresponding to the request of minimum time for both the

response to desired reliability variations and the rejection

of disturbances at the possible cost of oscillatory transients

and diminished stability degree, while 1 calls for maximum

stability and transients’ smoothness, at the potential cost of

response time, and have the required phase margin vary in

accordance with the user choice, say from 40◦ to 80◦.

D. Control Validation

A simulation campaign was conducted, prior to the im-

plementation of the control policy in a real software system.



In
c
o
m

in
g
 r

e
q
u
e
s
ts

0

100

200

300

Time step

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(a) Entering requests

S1

S2

R
e
lia

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

Time step

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(b) Services reliabilities

Setpoint

Actual value

R
e
lia

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

Time step

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(c) Overall reliability

C
o
n
tr

o
l

0

0.2

0.4

0.6

0.8

1.0

Time step

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(d) Control probability

Figure 3. Simulation of two-alternatives selector.

The results of one of the simulations from the campaign

are reported in Figure 3. The MATLAB simulator is started

asking for 10000 simulation steps, each node can serve max-

imum 100 of requests per step and the system is supposed to

maintain a reliability of 0.9. The initial failure probability of

the first service is 0.4 while the one for the second service

is 0.1.

A few variations and disturbances are injected into the

system. First, to see how the controller reacts to changes

in the set point, the simulations step are divided into three

different parts and the requested reliability is diminished

to 0.8 in the second part of the simulation. Second, the

simulation is divided into five different parts, in each of these

parts the success and failure probabilities of the services

were changed, for example simulating the complete failure

of the first service between time units 2000 and 4000, as can

be seen in Figure 3(b); the figure also shows the complete

pattern. Third, the number of requests entering the system is

changed according to a predefined pattern, to see the reaction

of the load balancer to different loads. As can be seen in

Figure 3(c), at time unit 4000, i.e., when the first service

node is back to its normal operations, there is a spike in

reliability that is immediately compensated by the control

action shown in Figure 3(d).

The MATLAB implementation which has been used to

perform the experiments will be discussed later in Section

IV.

III. N-ALTERNATIVES ONLINE DYNAMIC BINDING

Thanks to its inherent modularity, the control approach

presented in the previous section for the two-alternatives

case can be extended to the n alternatives in a natural

manner. In 1976 D. Knuth proved that every multinomial

distribution can be equivalently reproduced by conveniently

combining binary probabilistic choices [6]. In a similar

fashion, to build a n-alternatives selector, it suffices to apply

the scheme of Section II-B hierarchically in order to build

a binary selection tree whose leaves are the n components

that can be targets of the binding and internal nodes are

two-alternatives selectors. This leads to a structure like the

one shown in Figure 4, composed of controllers like the

one we devised for the two-alternatives case. Notice that the

“intermediate” nodes we generated can be considered as fic-

titious, since they are used only to compute the probabilities

of routing from the input node to the possible targets.

Combining PI controllers, therefore creating a hierarchical

control structure, requires careful setting of the parameters

for the different control elements. To understand the issue,

assume the structure of Figure 4 is implemented and both

arrows exiting from C1 are connected to concrete executors,



p 1-p

p 1-p p 1-p

Level: 0

Sp: T

Level: 1

Sp: T/2

C0

C1 C2

Figure 4. N-alternatives binding structure.

S1 and S2. These executors have their own reliabilities,

respectively r1 and r2. The reliability rC1
provided by C1

can be computed as p1 · r1 + (1− p1) · r2, where p1 is the

value produced by the controller. When rC1
does not meet

the reliability requirement, the controller C1 can only adjust

the value of p1 in order to get as close as possible to the

target. This adjustment typically takes a few time steps to be

completed, depending on the configuration of the controller

(i.e., the values of K and Ti).

Suppose now that the system is running and satisfies

the overall reliability target. Consider a scenario where r1
decreases sharply, for example due to a complete failure of

the service S1. Assuming that all two-alternatives controllers

adopt the same time-step to query their siblings, the violation

of the requirement due to S1’s failure is propagated upwards

from C1 and therefore it is perceived by both C1 and C0 in-

stantaneously triggering a reaction. Simultaneous changes in

the decision of C0 and C1 could interfere with one another,

delaying the solution and possibly introducing oscillations

in the global reliability of the system. A better solution for

the problem is to allow the controller which is closer to the

source of the violation to react first. In this case, if possible,

C1 would compensate the failure of S1 by redirecting the

load to S2. If the compensation is not possible, it would

still provide the best guarantees that could possibly been

obtained at that level in the tree. Only at this point, if still

needed, the intervention of the higher level controller C0

should be triggered.

This scenario naturally generalizes to more complex se-

lection trees and can be solved applying a multirate control

strategy. The term means that for each level in the hier-

archy, the corresponding controllers act with different time

constants, i.e., at different rates. Precisely, higher-level nodes

in the routing tree would intervene slower with respect to

lower ones and their control period would just need to be

changed accordingly, intuitively being larger. To simplify

the design of n-alternatives selectors, the PI controllers can

still share the parameters, introducing a further “scaling”

factor, identified with the integer parameter rTs
. This means

that each tree level exerts its control action every rTs
steps

with respect to the lower one. rTs
can be interpreted as

the number of time steps required by a controller node to

stabilize the control signal and therefore the reliability of the

correspondent part of the tree. Multirate systems are a very

well established research domain in control, and powerful

analysis and synthesis techniques are available [7]. In this

case, the use of such a strategy allows to avoid the issues

generated by mutual interference of the controllers.

The response to a step variation of a five alternatives

binder is shown in Figure 5, where the short convergence

time required to meet the goals can be visually appreciated.

SetPoint

ActualReliability

R
e

lia
b

ili
ty

0.4

0.5

0.6

0.7

Time step

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 5. Step response of a 5-alternatives binder.

Concluding, we can state that the two-alternatives case

scales up quite seamlessly, thanks to the adopted control-

based approach. On the other hand, however, the tuning

problem in the n-alternatives case is definitely more complex

than in the two-alternatives case, since in the former case a

multivariable and interacting system needs managing. Exper-

iments have shown that the auto-tuning procedure devised

for the two-alternatives case is not replicable as is in the n-

alternatives context, and more advanced synthesis techniques

need to be devised. The presented preliminary solution based

on multirate control already shows that the system can work

satisfactorily also with “hand made” tuning, thereby proving

that the extension is practically feasible, and the tuning

problem is well posed from the system-theoretical stand-

point. As for now, the problem stands however open, and

is being addressed with methodologies specifically aimed

at multivariable control. Also, more advanced adaptation

mechanisms are being studied, grounded on well established

control-theoretical methods such as that proposed in [8]. The

results of this ongoing research will be presented in future

works.

IV. IMPLEMENTATION

To validate our approach and demonstrate its applicability,

we implemented the control algorithm in three different



platforms. The three artifacts can be downloaded from the

website http://home.dei.polimi.it/filieri/seams2012.

A Matlab implementation is available for simulation pur-

poses2. Numerical mathematic programming is an estab-

lished instrument for control experts to study controller’s

performance by simulating disturbances and process dynam-

ics.

The second implementation is based on the Spring Frame-

work [10]. Spring is considered one of the most complete

lightweight container for J2EE applications. We exploited

Aspect Oriented Programming (AOP) functionalities in or-

der to show how a simple way our methodology can be

integrated in real life applications with low impact on

development organization. Monitoring and control can be

defined as a specific aspect of the application, requiring no

changes on the existing code. Indeed, the around advice

of AOP allows one to perform custom behavior before

and after invocation of an existing method, resulting in a

natural environment to engraft our monitoring and control

methodology. The impact on performance is definitely low

thanks to the complete integration of our framework in

Spring (further details in [10] or on the Spring Framework

website). A running instance of the Spring implementation

is also accessible from the aforementioned url, with a web-

interface to ease the demonstration.

Finally, to show how to build an n-alternatives selector

in Java, we implemented a simple prototype which auto-

matically arranges the available executors in a balanced

binary tree and applies to it the control laws presented in

Section III. Notice that, though it is theoretically possible to

obtain effective control with any binary tree, the choice of a

balanced (or almost balanced) tree proved in our experiments

to be easier to configure ad more efficient. Indeed the tree

is set up by applying to each control node a sampling time

of rdTs
, where d ≥ 0 is the distance by the leaves.

The Matlab and the Spring implementations support the

auto-tuning procedure sketched in Section II.

V. RELATED WORK

Dynamic binding for Web services is emblematic of many

situations in which multiple implementations for the same

abstract operation are available and the actual execution of

incoming requests has to be delegated to one of them. The

selection criteria is usually based on cost, provided QoS, or

both.

Most of the current approaches address this problem by

setting a convenient optimization problem, where different

qualities are traded-off, looking for an optimal, or at least

satisfactory, solution [11], [12]. Earlier approaches allow the

formulation of an optimization problem for each operation

in order to select the best candidate with respect to a local

2We also implemented a Scilab version. Scilab is a widely used open-
source Matlab counterpart [9].

objective function [13], [14]. Local approaches are usually

efficient because in most of the practical cases the number

of candidates for each single operation are not many. On the

other hand, most of the QoS requirements are expressed at

application level, hence shrinking the scope down to single

operations my produce sub-optimal solutions with respect

to the global system, or, conversely, they may overshoot

producing (possibly costly) better-than-required solutions.

Subsequent approaches allow for managing the optimization

of a global objective, spreading over the entire design-

space [15], [16]. The immediate negative effect is in terms

of complexity: considering in a single optimization all the

possible alternative bindings of each operation leads to a

combinatorial explosion. In practice, these approaches are

either unfeasible for even small cases or too complex to

provide binding control. Besides the growth in the explo-

ration space, the non linearities of the global problem may be

untreatable with standard mathematical procedure and may

require the adoption of soft computing techniques, such as

genetic algorithms [17].

Some recent approaches combine both local and global

techniques to so to improve the performance of global search

by feeding in locally optimal bindings of all or part of

the operation level selections (e.g. [18], [19]). Most of the

optimization-based approaches consider multiple QoS met-

rics simultaneously. In this work we focused on reliability

(with the generality provided by the domain-specific notions

of success and failure), though our methodology can be

adapted to control other quantitative QoS properties too,

while keeping the same controller structure.

Another approach to dynamic binding has been investi-

gated in our group in the case of service-oriented archi-

tectures [20]. The problem setting in that case, however, is

quite different and refers to the case where multiple clients

dynamically bind to functionally equivalent services with the

goal of optimizing response time. The paper introduces and

compares several predefined binding strategies, both on a

theoretical and experimental grounds, and without feedback

control.

We are not aware of other dynamic binding approaches

based on control-theory. Our previous work [1] introduced a

control-theory enabled adaptation mechanism for the control

of systems modeled through Discrete Time Markov Chains.

The goal of the controller was to continuously ensure

satisfaction of a goal expressed as the probability to reach

a desired success state from the initial one. The controller

was capable of trading off reliability and costs by solving

an optimization problem. The complexity of the adaptation

mechanism did not depend on the size of the DTMC but

only on the type of objective function and on the number

of controlled variables and disturbances (i.e. transitions

which values can change due to external factors that can be

observed but not influenced). Such an optimization problem

could be complex enough to make certain systems loose the



ability to timely adapt when their requirements are violated.

Thus, though [1] can be used to solve the problem of

dynamic binding, this problem can be mapped to a subset

of DTMCs (those having a tree-shaped connection graph)

leading to the more efficient solution proposed in this paper.

The adoption of a simpler controller allows for more

efficient and timely adaptations even on low-end or mobile

devices. For the proposed controller is also possible a formal

assessment of its effectiveness (cfr. Section II). Finally,

from an architectural viewpoint, in [1] the control problem

is formulated starting from a DTMC model of the entire

system. Every structural change, such as the addition of

a new state, would invalidate the dynamic model of the

systems and consequently the one of the controller. In the

approach we proposed in this paper, adding or removing

a new alternative would require a very low effort because

of the “boxed” hierarchical structure of the n-alternatives

controller.

Concerning the application of control theory to achieve

continuous QoS assurance, in the field of load-balancing, a

comparison between optimization based and control-theory

based techniques has been performed in [21]. Though the

MIMO controllers used to balance the load among DB2 in-

stances in [21] was more complex than a PI, the effectiveness

of the feedback loop overwhelmed the optimization-based

techniques, particularly in the situation of highly variable

loads, where efficient continuous adjustments leaded to a

smother performance curve, with reduced outliers and faster

convergence time. More related applications in the field of

load-balancing have to be further investigated to identify

possible connections and shared controller structures.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the dynamic selection of alternatives in

dynamic binding problems has been addressed in its full

generality, starting from its most elementary setting. First,

the choice of dynamically binding a service request to

one of two available alternatives has been addressed by

means of control-theoretical analysis and synthesis. An auto-

tuning procedure has been devised to automatically select

the most suitable controller configuration even at run-time.

Subsequently, the solution has been generalized to selecting

among an arbitrary number of components.

Both a simulation environment in Matlab and a real

implementation in Java, within the Spring framework and

based on Maven, are discussed and extensively tested. The

results of our tests allow us to conclude that the control-

theoretical approach is a feasible decision mechanism for

achieving a specific reliability. Additional quantitative QoS

properties could also be formalized and managed within the

same framework.

We are currently exploring the adoption of more complex

control strategies to enhance the expressiveness of our mod-

els and the possibility of defining trade-off conditions. We

firstly aim at modeling finite capacity queues and multiple

types of requests, with different QoS requirements, in a uni-

fying framework. We are also investigating the application

of our dynamic binding mechanism in a fully distributed

environment, with multiple selectors for a set of executors.

In such setting, we aim at extending the scope of our

methodology by devising a formal framework to solve the

problem of parameterization of each single controller and

possible stability issues.

ACKNOWLEDGMENT

This research has been partially funded by the European

Commission, Programme IDEAS-ERC, Project 227977-

SMScom.

REFERENCES

[1] A. Filieri, C. Ghezzi, A. Leva, and M. Maggio, “Self-adaptive
software meets control theory: a preliminary approach sup-
porting reliability requirements,” in ASE, 2011, pp. 283–292.

[2] K. J. Åström and T. Hägglund, Advanced PID control. Re-
search Triangle Park, NY: ISA - the Instrumentation, Systems,
and Automation Society, 2006.

[3] Messaoud and Benidir, “On the root distribution of general
polynomials with respect to the unit circle,” Signal Process-
ing, vol. 53, no. 1, pp. 75 – 82, 1996.

[4] A. Leva, “PID autotuning algorithm based on relay feedback,”
IEE Proceedings-D, vol. 140, no. 5, pp. 328–338, 1993.

[5] A. Leva, S. Negro, and A. V. Papadopoulos, “PI/PID au-
totuning with contextual model parametrisation,” Journal of
Process Control, vol. 20, no. 4, pp. 452–463, 2010.

[6] D. Knuth and A. Yao, Algorithms and Complexity: New
Directions and Recent Results. Academic Press, 1976, ch.
The complexity of nonuniform random number generation.

[7] M. Araki and K. Yamamoto, “Multivariable multirate
sampled-data systems: State-space description, transfer char-
acteristics, and nyquist criterion,” IEEE Transactions on Au-
tomatic Control, vol. 31, no. 2, pp. 145 – 154, feb 1986.

[8] A. Leva, C. Maffezzoni, and R. Scattolini, “Self-tuning PID
regulators for stable systems with varying delay,” Automatica,
vol. 30, no. 7, pp. 1171–1183, 1994.

[9] Scilab Consortium, Scilab: The free software for numerical
computation, Scilab Consortium, Digiteo, Paris, France,
2011. [Online]. Available: http://www.scilab.org

[10] R. Johnson, J. Hoeller, A. Arendsen, T. Risberg, and D. Kopy-
lenko, Professional Java Development with the Spring Frame-
work. Birmingham, UK, UK: Wrox Press Ltd., 2005.

[11] D. Ardagna and R. Mirandola, “Per-flow optimal service
selection for web services based processes”,” Journal of
Systems and Software, vol. 83, no. 8, pp. 1512 – 1523, 2010.



[12] N. Ben Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas,
and V. Issarny, “Qos-aware service composition in dynamic
service oriented environments,” in Middleware 2009, ser.
Lecture Notes in Computer Science, J. Bacon and B. Cooper,
Eds. Springer Berlin / Heidelberg, 2009, vol. 5896, pp. 123–
142.

[13] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for
web services selection with end-to-end qos constraints,” ACM
Transactions on the Web, vol. 1, May 2007.

[14] D. Ardagna and B. Pernici, “Adaptive service composition in
flexible processes,” IEEE Transactions on Software Engineer-
ing, vol. 33, no. 6, pp. 369 –384, june 2007.

[15] M. Jaeger, G. Mhl, and S. Golze, “Qos-aware composition
of web services: An evaluation of selection algorithms,” in
On the Move to Meaningful Internet Systems 2005: CoopIS,
DOA, and ODBASE, ser. Lecture Notes in Computer Science,
R. Meersman and Z. Tari, Eds. Springer Berlin / Heidelberg,
2005, vol. 3760, pp. 646–661.

[16] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “Qos-aware middleware for web services
composition,” IEEE Transactions on Software Engineering,
vol. 30, no. 5, pp. 311–327, may 2004.

[17] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani,
“An approach for qos-aware service composition based on

genetic algorithms,” in Proceedings of the 2005 Conference
on Genetic and Evolutionary Computation, ser. GECCO ’05.
New York, NY, USA: ACM, 2005, pp. 1069–1075.

[18] M. Alrifai and T. Risse, “Combining global optimization with
local selection for efficient qos-aware service composition,”
in Proceedings of the 18th international conference on World
wide web, ser. WWW ’09. New York, NY, USA: ACM,
2009, pp. 881–890.

[19] Q. Liang, X. Wu, and H. Chuin Lau, “Optimizing service
systems based on application-level qos,” IEEE Transactions
on Services Computing, vol. 2, no. 2, pp. 108–121, april-june
2009.

[20] C. Ghezzi, A. Motta, V. P. L. Manna, and G. Tamburrelli,
“Qos driven dynamic binding in-the-many,” in QoSA, 2010,
pp. 68–83.

[21] D. Yixin, W. W. Chai, J. Hellerstein, A. Storm, M. Surenda,
S. Lightstone, S. Parekh, C. Garcia-Arellano, M. Carroll,
C. Lee, and J. Colaco, “Comparative studies of load balancing
with control and optimization techniques,” in Proceedings of
the American Control Conference, june 2005, pp. 1484 – 1490
vol. 2.


