
Iterative Test Suites Refinement for Elastic Computing
Systems∗

Alessio Gambi
University of Lugano, Lugano,

Switzerland
alessio.gambi@usi.ch

Antonio Filieri
University of Stuttgart,

Stuttgart, Germany
antonio.filieri@

informatik.uni-stuttgart.de

Schahram Dustdar
Vienna University of

Technology, Vienna, Austria
dustdar@dsg.tuwien.ac.at

ABSTRACT
Elastic computing systems can dynamically scale to contin-
uously and cost-effectively provide their required Quality
of Service in face of time-varying workloads, and they are
usually implemented in the cloud. Despite their wide-spread
adoption by industry, a formal definition of elasticity and
suitable procedures for its assessment and verification are
still missing. Both academia and industry are trying to
adapt established testing procedures for functional and non-
functional properties, with limited effectiveness with respect
to elasticity. In this paper we propose a new methodology to
automatically generate test-suites for testing the elastic prop-
erties of systems. Elasticity, plasticity, and oscillations are
first formalized through a convenient behavioral abstraction
of the elastic system and then used to drive an iterative test
suite refinement process. The outcomes of our approach are
a test suite tailored to the violation of elasticity properties
and a human-readable abstraction of the system behavior to
further support diagnosis and fix.

Categories and Subject Descriptors
K.6.4 [System Management]: Quality assurance

General Terms
Experimentation, Measurement, Performance

Keywords
Cloud, behavioral modeling, model-based testing

1. INTRODUCTION
Cloud computing is gaining momentum and many com-

panies are moving towards its adoption for business critical
applications [16]. On-demand resources allocation and pay-
as-you-go cost models are the enabling features for designing

∗This work is partially supported by the Swiss National Science
Foundation under the “Fellowship for Prospective Researches”
contract PBTIP2-142337.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

elastic computing systems that can adapt to time-varying
workloads in order to make applications continuously sat-
isfy Quality of Service (QoS) requirements, still minimizing
operative costs.

The main research trends in the area of cloud-based elastic
computing are mostly concerned on design principles [14] and
benchmarking [17], while quality assurance is often delegated
to the dynamic scaling capabilities of the infrastructure only.
Supporting elasticity requires effective trade-off strategies.
The application is indeed required to scale up quickly in
response to a growing incoming workload, though avoiding
unnecessary over-provisioning and, furthermore, to efficiently
release resources no longer needed (scale down).

A common praxis in designing elastic systems is to tai-
lor the design of resource allocation controllers to specific
expected workloads. Being rule-based controllers the state
of practice, this usually ends up in the definition of a sub-
optimal ruleset to control resources allocation. Most often
rules are identified by simulating the application execution
under expected workloads (e.g. [11]). The main drawback
in such a case is the inability to deal with workload pro-
files unforeseen at design time. The lack of a convenient
methodology in workload profiling for elastic systems ex-
poses designers to the risk of missing the identification of
critical usage scenarios that might lead to emergent behav-
iors and could jeopardize the application execution. This
is especially true for cloud computing where classic design
commonsense may sometimes fail, as we showed for example
in [15], where an elastic system reacted in a quite counterintu-
itive way to two wave-shaped workloads of different intensity.
The prompt reaction of the system to the “high-intensity”
wave could misleadingly suggest the system can deal with all
the lower intensity loads up to that scale. However, the same
system, when solicited with a significantly lower intensity
workload, failed to scale correctly. This resulted in an overall
degradation of its performance. Islam et al. [17] provided
another example where an elastic Web application showed a
diverging behavior leading to the acquisition of an ever grow-
ing amount of resources from the cloud when subjected to an
oscillatory workload with specific, constant, amplitude and
oscillation frequency. In both cases, allocation controllers
were rule-based.

The previous examples highlight the quest for a paradigm
shift in quality assurance methodologies, where elasticity has
to be explicitly taken into account.

In this paper we focus on the definition of a systematic
model-based test generation framework for the assurance of
elasticity properties that iteratively enhances an initial test-

+

State Space
Identification

Frequences
Interpolation

Guided
Test Case

Generation

Test Execution
Test
Suite

Report
Problematic
Workload

Problematic
Workload
Found?

NY

Initial
Test Suite

Model Construction

Figure 1: Overview of the proposed approach.

suite. Elasticity properties include elasticity itself, i.e., the
ability of dynamically allocating and deallocating resources
on-the-fly, and special forms of its violation including plastic-
ity, i.e., the inability to spontaneously return to the original
configuration after an adaptation process, and resonance, i.e.,
the emergence of permanent oscillations in resource allocation
in response to specific input workloads.

Testing elasticity properties presents several challenges that
we try to summarize in the following observations: (i) elas-
ticity depends on complex interactions between computing
infrastructures, applications, control logics, and external envi-
ronmental conditions (e.g., the interaction with third-parties
components); (ii) broadly applicable guidelines for testing
elastic applications in the cloud are still missing, making
handcrafted test cases often biased (as in the previous exam-
ples) or unable to capture counterintuitive dynamics; finally,
(iii) results obtained by testing an elastic system in a specific
cloud environment are hard to generalize to other clouds
because of the lack of a wide-scope abstraction model that
allows an infrastructure-agnostic representation of elasticity
concerns.

The expected contributions of this new research thread
can be summarized in the following points:
• an abstract behavioral formalism suitable for capturing

and describing elasticity concerns, supporting automatic
reasoning about elasticity properties.
• an automatic procedure for inferring systems’ behavioral

models from test executions and refining them after new test
results are gathered.
• an iterative test suite refinement procedure that exploits

the acquired knowledge as captured by the abstract model to
find test candidates likely to make the system violate its elas-
ticity properties. The execution of the generated test cases
produces further information to confirm the presence (respec-
tively, absence) of undesired behaviors of the application,
and to enhance the model before the next iteration.

2. THE APPROACH
An overview of the new idea proposed in this paper is

provided in Figure 1. The process begins with an initial test
suite, either provided by the designer or generated randomly.
A test suite contains a set of workload profiles, each of which
can be defined as an instantiation of a parametric class of
workloads. A parametric class of workload profiles is defined
as a time-dependent parametric function f(w, t), where t
denotes the time and w is a parameters vector, and represents
the number of incoming requests at time t.

We require every feasible workload to be positive and
bounded, i.e., negative or infinite number of requests cannot

be issued. Formally, ∃M ∈ R s.t. 0 ≤ f(·, ·) < M , where R
is the set of real numbers. Furthermore, we require every
incoming workload to have a finite horizon, that is, all the
requests have to be issued within a finite time. This implies
that ∃t̄ ∈ R+ s.t. ∀t ≥ t̄ f(·, t) = 0. The second constraint
makes it possible to verify whether the system is able to
eventually return to its original configuration.

The structure of f(·, ·) defines the type of solicitations to
test the system with, and can be arbitrarily complex. For
example, in [12] a parametric sine function has been used
to test the response of the system to oscillatory loads. A
workload profile is uniquely characterized within its para-
metric class by an assignment w̄ of the function parameters.
For simplicity, we assume that a test suite is composed by
workload profiles belonging to the same parametric class.

The test suite is executed on an instance of the application.
If any test case leads to the violation of required elasticity
properties, the corresponding workload profile is marked as
problematic and reported to the designers in order to drive
diagnosis and fix. Otherwise, the test suite undergoes a
refinement attempt.

The first step for refining the test suite is the construction
of a model capturing the elasticity behavior of the system.
This model is a Labelled Transition System (LTS) where
states capture the current resources allocation and transi-
tion labels describe the frequency of transitions occurrence
during the execution of the test suite. The initial state of
the LTS represents the initial configuration of the system.
For the sake of simplicity, here we assume the resources allo-
cation to be simply described by the number of computing
instances in use and the controller to be only able to allocate
or deallocate identical instances (i.e., not to change their
local configuration).

Transition frequency φw̄
i,j from state si to state sj is directly

computed for each input workload w̄ from test results data
as follows. Let ni,j be the number of observed transitions
form si to sj during the execution of the workload:

φw̄
i,j =

ni,j∑
sk∈S

ni,k

Intuitively, if the system scales up and down correctly, for
all the observed states (possibly with the exception of the
initial one) both incoming and outgoing frequencies cannot
be zero; otherwise, the system would be stuck in one config-
uration (plasticity). Furthermore, if the system is behaving
properly, to each scale-up should correspond a scale-down,
requiring the corresponding frequencies to get close one an-
other. Finally, in case of permanent oscillations (resonance)
it would mostly likely be possible to identify parts of the

LTS resembling a strongly connected components. All such
situations can be mapped on convenient patterns on transi-
tion label values. For the sake of simplicity, in this paper we
will focus on plasticity. Analogous approaches can be used
for the other mentioned properties.

After computing the transition frequencies, their depen-
dency on the input workload has to be assessed. Being input
workloads uniquely characterized by the parameter vector w̄,
a set of functions φ̂i,j(w) are computed in order to approxi-
mate the frequencies φw̄

i,j by interpolating their dependency
on the value of the parameters vector w̄. That is, for a given
workload w̄, φ̂i,j(w̄) ≈ φw̄

i,j .

The structure of the functions φ̂i,j(·) is a priori unpre-
dictable. They are in general multivariate (given the size
of w) and may be non-linear. Furthermore, being the data
generated via random testing it might be the case that the ob-
served frequencies do not constitute a representative sample
for inferring the transition functions. For these considera-
tions, parameter-fitting methods may not be suitable for our
purpose, driving our choice of using statistical interpolators.
The latter are indeed able both to approximate arbitrarily
complex functions of the parameter space w and to provide
confidence intervals for each interpolated point. Confidence
intervals capture the uncertainty that stems from the limited
knowledge due to finite sampling. We are currently planning
to achieve statistical interpolation by Gaussian processes [18].

Gaussian processes generalize Gaussian probability dis-
tributions in the functional space, providing for each input
value w̄ a Gaussian distribution N w̄(µ, σ2) such that, when
the number of samples grows, the expected value of the dis-
tribution µ converges to the real value of the approximated
function and the variance σ2 tends to 0. For this reason, µ(w)
can be considered as a correct estimator of the interpolated
function (in our case any of the frequency functions φw

i,j),

while the variance σ2 provides a measure of the uncertainty
of the estimation. As soon as the interpolation process is
completed, a confidence measure on the constructed model
can be provided as the maximum variance over w (or, more
precisely, over a reasonable parameter sub-space considered
feasible).

Based on the constructed model, the test suite can be
improved having in mind two orthogonal goals: identify
problematic workload profiles and improve model confidence.
The two goals do not interfere one another and can be pursued
simultaneously [10].

In order to generate input workloads likely to reveal plas-
ticity of the application, the heuristic we propose is based
on finding vectors w̃ that either make frequencies of self-
transitions close to one or frequencies related to scale up
(or down) overall close to zero. By exploiting the previously
constructed behavioral models, this means finding the values
w̃ that make the proper φ̂i,j(w̃) close to one or to zero. Such
heuristic may provide a speedup with respect to a random
exploration of the parameter space that could be very large
even for a small number of parameters. Furthermore, the
uncertainty captured by the model provides further guidance
to the test case generation process. Indeed, a value w̃ could
make µ(w̃) ≈ 0 for a transition, but it may turn out to be
a false positive due to the inaccuracy of the model. The
probability of such erroneous assessment can be bounded by
using the variance σ2(w̃) for a standard hypothesis testing.

The second goal of test case generation is the improvement
of the inferred behavioral models. This goal can be achieved

by adding test cases corresponding to input regions leading
to high values of σ2(·). Adding samples in such regions
will improve model confidence and, consequently, make the
research of the w̃ values more effective by reducing the
number of false positives.

The new test cases identified by the previous heuristic can
then be added to the initial test suite and executed during
the next iteration. Notice that the test suite is executed incre-
mentally, thus the execution time of each iteration depends
only on the new test cases to be executed.

A possible criterion to decide the termination of the itera-
tive test suite refinement is the reach of an high confidence
on the behavioral model while no w̃ can be found that makes
transition function close to zero (or to one for self-transitions).

2.1 Novelty
The work presented in this paper nicely fits along with

previous work on queuing theory and performance modeling,
and to the best of our knowledge, its contributions that are
hereafter summarized have not been explored before:

• The formalization of elasticity properties by means of
formal patterns on LTS models.
• The behavioral abstraction strategy accounting for both

model structure and transition frequency interpolation
as functions of the workload parameters that includes
also a confidence measure on the inferred models.
• The model-based heuristic for test case generation that

aims both to maximize the probability of generating
problematic input workloads and improve the quality
of the behavioral model.

Compared to pure random testing, our approach may
reduce the number of the generated test cases thanks to
the direct search, thus it can reduce the overall testing time
and efforts. Furthermore, the confidence measure of the
model provides a progress index for the refinement process,
and allows to quantify the achieved improvement after each
iteration.

3. EXPECTED FEEDBACK
The main points we would like to discuss with the audience

are pointed out by the following questions:

• Is the behavioral model that we propose suitable to
capture all the elasticity concerns? How about other
quality properties that are specific of elastic systems?
What would will be a promising alternative to LTS?
• Statistical inference is computationally expensive. A

parametric model for frequency functions could allow
the use of established and efficient parameter fitting
algorithms. Is there any valid parametric model that
we can use in place of Gaussian processes?
• How can we exploit the knowledge that we obtained

by testing elastic systems on a specific cloud to get
insights about their deployment on different platforms?
What are the characteristics to take into account in
order to assess the validity of reusing previous results,
at least up to a certain degree of confidence?
• Is simulation suitable for analyzing elastic applications?

Would you recommend specific benchmarks or case
studies to assess the validity of our approach?

4. RELATED WORK
In their previous work, the authors investigated the use

of Kriging models, a variation of Gaussian processes, for

modeling cloud-based systems [13], described the grounding
principles of elastic processes, a research agenda for elastic
computing and a novel language for their design [4, 5].

The single most related paper by the authors is [12] where
they propose an automatic test case generation for elastic
systems based on Genetic Algorithms and introduce the idea
of parametric workloads for the compact representation of
test cases that we used here. In this paper, authors propose
an alternative approach for generating test cases that builds
an informative model of the system behavior and tries to
speed up the generation process following a formally grounded
heuristic instead of (pseudo-)randomized search.

Model-based test case generation is a widely investigated
topic [1]. Avritzer and Weyuker [2] used behavioral abstrac-
tions of software behaviors to drive the automatic generation
of load test-suites. In particular, they analyzed a Markov
model of the system to identify incoming requests rate likely
to degrade its performance. In our approach, workloads are
possibly characterized by complex functions, not just their
request rate. Analysis methods are consequently different
too. More recently, Barna et al. [3] proposed an adaptive
method to discover software and hardware bottlenecks and to
automatically generate workloads that saturate them. The
generation process is guided by performance models fitted
from previous runs and drives the system towards the worst
case behavior. We follow a similar principle, though we
specifically target elasticity properties.

5. OUTLOOK
The approach presented in this paper is undergoing a

first evaluation through simulation. The preliminary results
obtained for oscillatory workload profiles are encouraging.

After this preliminary assessment, we plan to validate our
methodology on real applications. For this purpose, we are
developing tools to support trace-based test execution in
the cloud and integrating them with popular clouds, such as
Amazon EC2 and OpenStack. We will release the prototype
in order to let practitioners use it and to collect their feed-
backs. We also plan to consider further workload families in
order to replicate problematic situations recently reported
in literature, thus enabling a thorough comparison.

Among the many aspects that deserve further investigation,
we will focus mainly on:
• Elastic behavior formalization. The LTS behavioral

abstraction provided in this paper leads to finite states au-
tomata closely resembling Discrete Time Markov Chains
(DTMCs). As a quite intuitive idea, our elasticity properties
seem to have tight relations with the notions of ergodicity
and recurrence related to DTMCs. If proved correct, such a
modeling would pave the way to the adoption of a whole new
set of quantitative verification approaches. Also, our heuris-
tic could be enhanced by results from our previous research
on parametric model-checking [9, 6], possibly speeding up
the search of problematic workloads.
• Controller abstraction. In this paper we consider cloud

based applications as a whole, including resource allocation
controllers and infrastructures. Being able to take into ex-
plicit account the controller’s logic could provide valuable
insights about the dependence of the problematic behaviors
not just on the workload but also on specific properties of
the resource allocation strategy. This could support the
automatic generation of controllers specifically tailored to
elastic systems, extending our previous work [7, 8].

6. REFERENCES
[1] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B.

Cohen, W. Grieskamp, M. Harman, M. J. Harrold, and
P. McMinn. An orchestrated survey on automated
software test case generation. JSS, To Appear.

[2] A. Avritzer and E. Weyuker. The automatic generation
of load test suites and the assessment of the resulting
software. Software Engineering, IEEE Transactions on,
21(9):705—716, 1995.

[3] C. Barna, M. Litoiu, and H. Ghanbari. Autonomic
load-testing framework. In Proceedings ICAC, pages
130–142, 2011.

[4] G. Copil, D. Moldovan, H.-L. Truong, and S. Dustdar.
Sybl: an extensible language for controlling elasticity in
cloud applications. In Proceedings of CCGrid, pages
112–119, 2013.

[5] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong.
Principles of elastic processes. IEEE Internet
Computing, 15(5):66–71, Sept 2011.

[6] A. Filieri and C. Ghezzi. Further steps towards efficient
runtime verification: Handling probabilistic cost models.
In Proceedings of FormSERA, pages 2—8, 2012.

[7] A. Filieri, C. Ghezzi, A. Leva, and M. Maggio.
Self-adaptive software meets control theory: A
preliminary approach supporting reliability
requirements. In Proceedings of ASE, pages 283—292,
Washington, DC, USA, 2011. IEEE Computer Society.

[8] A. Filieri, C. Ghezzi, A. Leva, and M. Maggio.
Reliability-driven dynamic binding via feedback control.
In Proceedings of SEAMS, pages 43—52, 2012.

[9] A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time
efficient probabilistic model checking. In Proceedings of
ICSE, pages 341—350, 2011.

[10] A. Forrester, A. Keane, and N. Bressloff. Design and
analysis of noisy computer experiments. AIAA Journal,
44(10):2331–2339, 2006.

[11] S. Frey, F. Fittkau, and W. Hasselbring. Search-based
genetic optimization for deployment and
reconfiguration of software in the cloud. In Proceedings
of ICSE, pages 512—521, 2013.

[12] A. Gambi, W. Hummer, and S. Dustdar. Testing elastic
systems with surrogate models. In Proceedings of
CMSBSE, pages 8—11, 2013.

[13] A. Gambi and G. Toffetti. Modeling cloud performance
with kriging. In Proceedings of ICSE, pages 1439–1440,
2012.

[14] A. Gambi, G. Toffetti, and M. Pezzè. Assurance of
self-adaptive controllers for the cloud. In Assurances
for Self-Adaptive Systems, volume 7740 of LNCS, pages
311–339. Springer, 2013.

[15] A. Gambi, G. Toffetti Carughi, C. Pautasso, and
M. Pezzè. Kriging controllers for cloud applications.
IEEE Internet Computing, To Appear.

[16] Gartner Inc. Forecast overview: Public cloud services,
worldwide, 2011-2016, 4q12 update. Technical Report
G00247462, Gartner Inc., 2013.

[17] S. Islam, K. Lee, A. Fekete, and A. Liu. How a
consumer can measure elasticity for cloud platforms. In
Proceedings of ICPE, pages 85–96, 2012.

[18] C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. The MIT Press, 2006.

