
Statistical Symbolic Execution with Informed Sampling

Antonio Filieri
University of Stuttgart
Stuttgart, Germany

Corina S. Păsăreanu
Carnegie Mellon Silicon Valley,

NASA Ames
Moffet Field, CA, USA

Willem Visser and
Jaco Geldenhuys

Stellenbosch University
Stellenbosch, South Africa

ABSTRACT
Symbolic execution techniques have been proposed recently for the
probabilistic analysis of programs. These techniques seek to quan-
tify the likelihood of reaching program events of interest, e.g., as-
sert violations. They have many promising applications but have
scalability issues due to high computational demand. To address
this challenge, we propose a statistical symbolic execution tech-
nique that performs Monte Carlo sampling of the symbolic program
paths and uses the obtained information for Bayesian estimation
and hypothesis testing with respect to the probability of reaching
the target events. To speed up the convergence of the statistical
analysis, we propose Informed Sampling, an iterative symbolic ex-
ecution that first explores the paths that have high statistical signif-
icance, prunes them from the state space and guides the execution
towards less likely paths. The technique combines Bayesian esti-
mation with a partial exact analysis for the pruned paths leading to
provably improved convergence of the statistical analysis.

We have implemented statistical symbolic execution with in-
formed sampling in the Symbolic PathFinder tool. We show exper-
imentally that the informed sampling obtains more precise results
and converges faster than a purely statistical analysis and may also
be more efficient than an exact symbolic analysis. When the latter
does not terminate symbolic execution with informed sampling can
give meaningful results under the same time and memory limits.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Model checking, Reliability, Statistical methods

General Terms
Approximate Algorithms, Probabilistic Verification

Keywords
Statistical Symbolic Execution

1. INTRODUCTION
Several techniques have been proposed recently for the proba-

bilistic analysis of programs [2, 11, 12]. These techniques have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

multiple applications, ranging from program understanding and de-
bugging to computing reliability of software operating in uncertain
environments.

For example, in previous work [11, 12], we described a bounded
symbolic execution of a program that uses a quantification proce-
dure over the collected symbolic constraints to compute the counts
of the inputs that follow the explored program paths. These counts
are then used to compute the probability of executing different
paths through the program (or of violating program assertions), un-
der given probabilistic usage profiles. While promising, these exact
techniques have scalability issues due to the large number of sym-
bolic paths to be explored.

To address this problem we describe a statistical symbolic ex-
ecution technique that uses randomized sampling of the symbolic
paths. For deciding termination of sampling we investigate two dif-
ferent criteria: Bayesian estimation and hypothesis testing [13, 25].
The first is used to estimate the probability of executing designated
program paths while the latter is used to test a given hypothesis
about such probability. Unlike in a typical statistical setting where
one samples randomly across a concrete input domain, our samples
are done in the context of symbolic execution, according to condi-
tional probabilities computed at each branching point in the pro-
gram. This approach is similar to statistical model checking [34,
37], with the difference that we work with code not with models
and we sample symbolic paths, where the probabilistic information
is computed based on the collected symbolic constraints.

When using Bayesian estimation, the randomized sampling ter-
minates when pre-specified confidence and error bounds (accuracy)
have been achieved. The answer to the analysis problem is not
guaranteed to be correct, but the probability of a wrong answer can
be made arbitrarily small [37]. However, in practice, the conver-
gence to an answer might be very slow. Hypothesis testing can be
faster [37], but both techniques may require a very large number of
sample paths to achieve the desired statistical confidence.

To speed up both methods, we propose Informed Sampling (IS),
an iterative technique combining statistical methods with partial ex-
act analysis. At each iteration, IS randomly samples a set of exe-
cution paths and performs a statistical analysis of the sample. The
probability of sampling each path is proportional to the number of
input points following it under the specified usage profile not to
bias the sample. If the statistical method converged, its result is
returned. Otherwise the already sampled paths are pruned out from
the execution tree and analyzed exactly. The next iteration will then
focus on the analysis of only the remaining part of the execution
tree, increasing also the chances of selecting low probability paths
that might have not been sampled (and pruned) during the previous
iterations.

For pruning the sampling space we propose an efficient proce-
dure that leverages the counts of the inputs associated with each ex-
plored symbolic path and subtracts them from the counts of all the
prefixes along the path. The intuition is that, at the end of each iter-
ation, the counts should keep track of the number of inputs that still
need to be explored (sampled) for the execution to follow that path.
The counts keep decreasing with each iteration and if a counter be-
comes 0 it means that the sub-tree rooted at that node has been fully
explored and can be safely pruned from the search space.

For estimating the probability results we propose a combination
of exact analysis (for the paths that are pruned in previous itera-
tions) and Bayesian statistical analysis (for the paths sampled in
the current iteration over the pruned state space). The analysis ter-
minates when the pre-specified confidence and error bounds have
been achieved (for Bayesian estimation) or when the hypothesis is
confirmed (for hypothesis testing). The analysis may also terminate
when all the paths have been explored, in which case the results will
be the same as for the exact analysis. IS converges faster and re-
quires fewer samples than the purely random sampling techniques,
since the set of samples is different with each iteration and each
pruned path set is analyzed exactly (with confidence 1). Further-
more, the probability of finding the target program events increases
with each iteration.

The main focus of this work is on computing non-functional
properties of programs, such as the probability of successful ter-
mination (or conversely the probability of failure) under a given
usage profile [11]. However, statistical symbolic execution with IS
can also be used for improving “classical” (non-probabilistic) sym-
bolic execution, in the sense that, if symbolic execution runs out
of resources (time, memory) the statistical techniques can be used
to provide useful information with statistical guarantees. Note also
that the statistical techniques provide an “any time” approach to
software analysis: the longer they run, the better the results.

We make the following contributions:

• statistical symbolic execution with two stopping criteria
(Bayesian estimation and hypothesis testing) and implemen-
tation within the Symbolic PathFinder tool [24];

• IS that converges faster than Monte Carlo sampling;

• an efficient procedure for pruning the state space for incre-
mental symbolic execution;

• combined statistical and exact information for (1) Bayesian
estimation and (2) hypothesis testing;

• experimental evidence showing the improvement of IS over
state-of-the-art statistical approaches.

2. BACKGROUND

2.1 Symbolic Execution
Symbolic execution is an extension of normal execution in which

the semantics of the basic operators of a language is extended to
accept symbolic inputs and to produce symbolic formulas as out-
put [17]. The behavior of a program P is determined by the values
of its inputs and can be described by means of a symbolic execu-
tion tree where tree nodes are program states and tree edges are
the program transitions as determined by the symbolic execution
of program instructions.

The state s of a program is defined by the tuple (IP,V,PC) where
IP represents the next instruction to be executed, V is a mapping
from each program variable v to its symbolic value (i.e., a sym-
bolic expression in terms of the symbolic inputs), and PC is a path
condition. PC is a conjunction of constraints over the symbolic

inputs that characterizes exactly those inputs that follow the path
from the program’s initial state to state s.

The current state s and the next instruction IP define the set of
transitions from s. Without going into the details of every Java
instruction, we informally define these transitions depending on the
type of instruction pointed to by IP.

Assignment. The execution of an assignment to variable v ∈ V
leads to a new state where IP is incremented to point to the next
instruction and V is updated to map v to its new symbolic value.
PC does not change.

Branch. The execution of an if-then-else instruction on condi-
tion c introduces two new transitions. The first leads to the state s1
where IP1 points to the first instruction of the then block and the
path condition is updated to PC1 = PC∧ c. The second leads to a
state s2 where IP2 points to the first instruction of the else block and
the path condition is updated to PC2 = PC∧¬c. If the path con-
dition associated with a branch is not satisfiable, the new transition
and state are not added to the symbolic execution tree.

Loop. A while loop is unrolled until its condition evaluates to
false or a pre-specified exploration depth limit is reached. Analo-
gous transformations are applied to other loop constructs.

The initial state of a program is s0 = (IP0,V0,PC0), where IP0
points to the first instruction of the main method, V0 maps the argu-
ments of main (if any) to fresh symbolic values, and PC0 = true. A
program may also have one or more terminal states that represent
conditions such as the successful termination of the program or an
uncaught exception that aborts the program execution abruptly.

Although our approach can be customized for any symbolic ex-
ecution system, we focus on Symbolic PathFinder (SPF) [24] that
works at the Java bytecode level.

2.2 Probability Theory
The possible outcomes of an experiment are called elementary

events. For example, the rolling of a 6-sided die may produce the
elementary events 1, 2, 3, 4, 5, and 6. Elementary events have to be
atomic, i.e., the occurrence of one of them excludes the occurrence
of any other. The set of all elementary events is called a sample
space. In this paper, we consider only finite and countable sam-
ple spaces, meaning that the underlying set of elementary events is
countable and finite.

DEFINITION 1 (PROBABILITY DISTRIBUTION). Let Ω be
the sample space of an experiment. A probability distribution on
Ω is any function Pr : P(Ω)→ [0,1]⊂ R that satisfies the follow-
ing conditions (probability axioms):

• Pr({x})≥ 0 for every elementary event x
• Pr(Ω) = 1
• Pr(A∪B) = Pr(A)+Pr(B) for all events A,B with A∩B = /0

The pair (Ω,Pr) constitutes a probability space.

DEFINITION 2 (CONDITIONAL PROBABILITY). Let (Ω,Pr)
be a probability space. Let A and B be events (A,B ⊆ Ω), and
let Pr(B) 6= 0. The conditional probability of the event A given that
the event B occurs, is:

Pr(A|B) = Pr(A∩B)
Pr(B)

Pr(A|B) is also referred to as the probability of A given B.

DEFINITION 3 (LAW OF TOTAL PROBABILITY). Let (Ω,Pr)
be a probability space and {Bn : n= 1,2,3, . . .} be a finite partition
of Ω. Then, for any event A:

Pr(A) = ∑
n

Pr(A|Bi) ·Pr(Bi)

The law of total probability can also be stated for conditional
probabilities:

Pr(A|X) = ∑
n

Pr(A|X ∩Bi) ·Pr(Bi|X)

where Bi are defined as in Definition 3 and X does not invalidate
the assumptions of Definition 2.

2.3 Probabilistic Analysis
We follow previous work [11] where we defined a symbolic ex-

ecution framework for computing the probability of successful ter-
mination (and alternatively the probability of failure) for a Java
software component placed in a stochastic environment. A failure
can be any reachable error, such as a failed assertion or an uncaught
exception. For simplicity, we assume the satisfaction of target pro-
gram properties to be characterized by the occurrence of a target
event, but our work generalizes to bounded LTL properties [37].

To deal with loops, we run SPF using bounded symbolic exe-
cution, i.e., a bound is set for the exploration depths. The result
of symbolic execution is then a finite set of paths, each with a path
condition. Some of these paths lead to failure, some of them to suc-
cess (termination without failure) and some of them lead to neither
success nor failure (they were interrupted because of the bounded
exploration) – the latter are called grey paths.

The path conditions produced by SPF consequently form three
sets: PCs = {PCs

1,PCs
2, . . . ,PCs

m}, PC f = {PC f
1 ,PC f

2 , . . . ,PC f
p}

and PCg = {PCg
1,PCg

2, . . . ,PCg
q}, according to whether they lead

to success, failure, or were truncated. Note that the path conditions
are disjoint and cover the whole input domain. In other words, the
three sets form a complete partition of the input domain [17, 24].

Not all input values are equally likely, and we employ a usage
profile to characterize the interaction of the software and the envi-
ronment. It maps each valid combination of inputs to the probabil-
ity with which it may occur. In [11] we provide an extensive treat-
ment of usage profiles and how they are used for the probabilistic
computations. For simplicity, and without loss of generality, we
will assume here that the usage profile is embedded in the code.
This can be done with every usage profile where the probabilities
pi are described by arbitrary precision, rational numbers. More
general usage profiles, such as Markov Chains, can be embedded
as well; they are analyzed in a bounded way.

Given the output of SPF, and assuming the constraints from the
usage profile have been embedded in the code, the probability of
success is defined as the probability of executing program P with
an input satisfying any of the successful path conditions (recall the
path conditions are disjoint):

Prs(P) = ∑
i

Pr(PCs
i) (1)

The failure probability Pr f (P) and “grey” probability Prg(P) have
analogous definitions; it is straightforward to prove that Prs(P)+
Pr f (P)+Prg(P) = 1. Prg(P) can be used to quantify the impact
of the execution bound on the quality of the analysis (1−Prg(P)).

In this paper we focus on sequential programs with integer in-
puts. In other work we provide treatment of multi-threading [20],
input data structures [11], and floating-point inputs [2] (see Sec-
tion 7).

2.3.1 Quantification Procedure
We compute the probabilities of path conditions using a quantifi-

cation procedure (e.g., [8, 11, 12]) for the path conditions. We use
LattE [8] to count models for linear integer constraints but our work
generalizes straightforwardly to other tools such as QCoral [2] (for

s0: true [109]

s1: x≤ 50 [50 ·106] s2: x > 50 [950 ·106]

s3: x 6= 500∧ x > 50 [949 ·106] s4: x = 500∧ x > 50 [106]

Figure 1: Partial symbolic execution tree of the example.

arbitrary floating point constraints) and Korat [3] (for heap data
structures; see [11] for details).

Given a finite integer domain D, model counting allows us to
compute the number of elements of D that satisfy a given constraint
c; we denote this number by](c) (a finite non-negative integer). By
definition [22], Pr(c) is](c)/](D) (where](D) is the size of the
domain implicitly assumed to be greater than zero).

The success probability (or failure or grey probability) can then
be computed using model counting as follows.

Prs(P) = ∑
i

Pr(PCs
i) =

∑i](PCs
i)

](D)
(2)

3. EXAMPLE
In this section we illustrate the proposed techniques with a sim-

ple example. Consider the code in Listing 1. Assume the goal is to
estimate the success probability of the method test, i.e., the proba-
bility of not reaching line 6, where an exception would be raised.
Assume the input variables x, y, and z range over the integer do-
main [1..1000]. The size of the input domain is 103 ·103 ·103 = 109

points. In practice the domains can be much larger. Note that the
size of the domain does not affect the complexity of the counting
procedure, which only depends on the number of input variables
and the number of constraints [8, 30].

Listing 1: Illustrative example
1 void test(int x, int y, int z) {
2 if(x<=50) {
3 // Do some work
4 } else {
5 if(x==500 && y==500 && z==500){
6 assert false;
7 }
8 // Do more work
9 }

10 }

Assuming a uniform usage profile, the probability of hitting the
failure (assert false) is 10−9, since there is only one point in the
input domain that can lead to failure.

To illustrate how sampling works, consider Figure 1, where a
part of the symbolic execution tree of Listing 1 is reported. For
each branching point (represented as a node) we show both the path
condition and the corresponding counter in square brackets. These
counters are initially computed by LattE as the paths are explored,
and stored for re-use. The first time a branch is encountered, the
counters are used to compute the probability of each alternative,
and a randomized choice is made accordingly (see Section 4). For
example, the probability of moving from s2 to s3 is 949/950; the
number of points satisfying PC at s3 is 949 ·106 while the number
of those satisfying PC at s4 is 106, which together sum up to the
number of points in PC at the parent state s2. In our approach, a
second simulation run would reuse this computation, making re-
peated sampling efficient.

s0: true [51 ·106]

s1: x≤ 50 [50 ·106] s2: x > 50 [106]

s3: x 6= 500∧ x > 50 [0] s4: x = 500∧ x > 50 [106]

Figure 2: Symbolic execution tree: counters updated after one
iteration

s0: true [106]

s1: x≤ 50 [0] s2: x > 50 [106]

s3: x 6= 500∧ x > 50 [0] s4: x = 500∧ x > 50 [106]

Figure 3: Symbolic execution tree: counters updated after two
iterations; only one path left to explore.

Statistical symbolic execution with IS starts the first iteration by
performing a small number of samples, as dictated by the proba-
bilities of the branching conditions. Assume for simplicity that at
the end of the first iteration, only the path s0 → s2 → s3 has been
taken (perhaps multiple times); this is reasonable since the tran-
sitions along this path have significantly higher probabilities than
their peers. The counter for the final PC along this path is 949 ·106.
This number is then subtracted from all the counters upward along
the path, yielding the updated counters in Figure 2. A new iteration
begins, where the sampling is now guided by the updated values of
the PC counters. Note that in this iteration, the transition from s2 to
s3 can never be taken, since its counter is 0. At the same time no-
tice that the probability of following the path leading to the subtree
containing the error (rooted at s4) has increased from 1/103 in the
first iteration to 1/51 in the second iteration.

Assuming the more likely path s0→ s1 is sampled in the second
iteration, the counters are updated according to the numbers shown
in Figure 3. In this last iteration, the only remaining path s0 →
s2→ s4 is taken, leading to the exploration of the subtree containing
the assert violation. Monte Carlo sampling without pruning would
miss the path leading to the violation, unless an infeasibly large
number of samples were taken. For example, after 20000 samples
the error is still undetected.

After each iteration we also combine the information obtained
from an exact analysis of pruned paths and a Bayesian inference
over sampled paths (over the pruned state space) to determine if
enough evidence was collected about the probabilities of the events
of interest. For simplicity we omit the details for this example but
we will describe this at length later in the paper.

4. STATISTICAL SYMBOLIC EXECU-
TION

We first describe Statistical Symbolic Execution, which com-
putes an approximate solution to the probability of success (or fail-
ure) of a program, based on sampling carefully chosen program
paths. Informed Sampling will be described in the next section.

The basic idea is to address the probability computation as a sta-
tistical inference problem. First, a randomized sampling procedure

generates a finite number of simulation runs and classifies each of
them as either satisfying or violating a given property φ (e.g., an
assertion in the code). Second, suitable statistical methods are ap-
plied to either estimate the probability of φ from an analysis of the
samples or to test a hypothesis about this probability.

Similar techniques have already been explored in the literature
on statistical model checking [34, 37], which typically phrase the
statistical inference problem in the context of formal verification of
probabilistic models, i.e., transition systems annotated with proba-
bilities such as Markov Chains or Markov Decision Processes.

We describe here how we adapted Bayesian statistical tech-
niques [37] in the context of symbolic execution of Java programs,
where no model is assumed and the probabilistic information is
derived via model counting over the symbolic constraints (in com-
bination with the usage profile).

4.1 Monte Carlo Sampling of Symbolic Paths
Typically, a Monte Carlo method defines the solution of the prob-

lem as the parameter of a hypothetical population, and then gener-
ates a random set of samples from which statistical estimates of this
parameter can be obtained [14, 26].

In the context of symbolic execution, we define a sample as the
simulation of one symbolic path. Whenever a branch is encoun-
tered during such simulation, the decision to proceed along either
of the alternative branches has to be taken according to the proba-
bility of satisfying the corresponding branch conditions under the
current usage profile.

Every time a condition is encountered, the simulation has to de-
cide whether to follow the true or the false branch. In particular let
PCbranch be the path condition at the current state, and let c be the
branching condition at that state. The path condition after taking
the “then” branch is PCthen = c∧PCbranch while the path condition
after taking the “else” branch is PCelse = ¬c∧PCbranch.

Similar to [12] we associate to each of PCbranch, PCthen, and
PCelse a counter of the number of points in the input domain satis-
fying the path condition, identified by C(PCbranch), C(PCthen) and
C(PCelse), respectively. The first time a path condition PC is en-
countered, its counter is initialized through model counting to the
number of points of the input domain that satisfies PC: Ci =](PC).
After its initialization, the value of each counter is stored and reused
through the simulation process.

We can compute the branch probabilities as follows:

pthen =
](c∧PCbranch)

](PCbranch)
=

C(PCthen)

C(PCbranch)

pelse =
](¬c∧PCbranch)

](PCbranch)
=

C(PCthen)

C(PCbranch)
(3)

From Equation (3) it is straightforward to note that](PCthen)+
](PCelse) =](PCbranch) and pthen + pelse = 1 .

The decision whether to take the then or the else branch can now
be taken randomly according to their respective probabilities pthen
and pelse. It remains to show that making the sampling choices
locally at each branch is equivalent to making the choices over the
complete PC, i.e., we do not introduce any statistical bias. This is
implied by the following result:

THEOREM 1. For a path with PC = c1 ∧ c2 ∧ . . .∧ cn and the
branching conditions encountered in the given order, the path prob-
ability given by Pr(PC) is equal to the product of the conditional
probabilities at each branch given by Pr(c1 | true)×Pr(c2 | c1)×
Pr(c3 | c2∧ c1)× . . .×Pr(cn | cn−1∧ . . .∧ c1).

PROOF. From Section 2.3.1 we have that Pr(PC) =](PC)
](D)

where
D is the complete finite domain and from Equation 3 we can rewrite
the product of conditional probabilities as

](c1)

](D)
×](c1∧ c2)

](c1)
×](c1∧ c2∧ c3)

](c1∧ c2)
× . . .×](c1∧ . . .∧ cn)

](c1∧ . . .∧ cn−1)

which is equal to](c1∧...∧cn)
](D)

= Pr(PC).

4.2 Bayesian Inference and Stopping Criteria
The samples generated by the Monte Carlo simulation described

in the previous section need to be analyzed to estimate the proba-
bility µ of the program to satisfy a given property φ . Bayesian sta-
tistical techniques exploit Bayes’ theorem to update the prior infor-
mation on the probability µ after every observed sample. The prior
is a probability distribution that summarizes all the available infor-
mation (including its lack) gathered through sampling [10, 19].

As explained in [37], a prior for µ can be formalized via the Beta
distribution B(α,β) (see details in [13, 25, 37]). By setting α and
β it is possible to specify the initial assumption about µ as follows.
Assume the software engineer has an initial guess µ̃ about µ , for
example based on the analysis of previous versions of the software
or on the quality of third-party components involved. One way of
encoding such knowledge as a prior distribution is:{

α = µ̃ ·Np

β = (1− µ̃) ·Np
(4)

where Np≥ 1 represents the “trust” on µ̃ as if it was observed on Np
samples. If no initial information is available, a “non-informative”
prior can be used, such as B(1/2,1/2) [25]. The meaning is that
we give the same chance (1/2) to both possible outcomes, and we
give small trust to it. We treat grey paths either optimistically or
pessimistically, meaning that they are considered as either success
or failure, as desired by the user.

When new samples are gathered, they are used to update the
prior, leading to the construction of the posterior distribution. In
particular, if n samples have been collected with ns of them satisfy-
ing φ , the parameters α ′ and β ′ of the posterior distribution will be
computed as: {

α ′ = α +ns

β ′ = β +n−ns
(5)

This information can then be used for statistical estimation or
hypothesis testing as explained below.

4.2.1 Bayesian Estimation
We use Bayesian estimation [13, 25] to compute a value that is

close to µ with high probability. More precisely, we compute an
estimate µ̂B such that:

Pr(µ̂B− ε ≤ µ ≤ µ̂B + ε)≥ δ (6)

where ε > 0 is the accuracy and 0 < δ < 1 is the confidence; the
accuracy determines how close the estimate has to be to the real
unknown µ and the confidence expresses how much this result can
be trusted [37].

Recalling that the posterior has a Beta distribution, with param-
eters α ′ and β ′, Equation (6) can be restated as:

FB(α ′,β ′)(µ̂B + ε)−FB(α ′,β ′)(µ̂B− ε)≥ δ (7)

where FB(α ′,β ′)(·) is the cumulative distribution function of the
posterior distribution, i.e., it computes the probability for a random

variable distributed according to the posterior to assume a value
less than or equal to the argument [22].

From the correctness of Bayesian estimation [13, 25] (i.e., it al-
ways converges to the real value of µ after enough samples are col-
lected), Equation (7) can be used as a sequential stopping criterion
to decide how many samples are needed to achieve the accuracy
and confidence goals.

If the estimation converges with the prescribed accuracy and
confidence, the estimate µ̂B is defined as the expected value of the
posterior distribution:

µ̂B =
α ′

α ′+β ′
(8)

An estimate on the number of samples that is required to achieve
the accuracy and confidence goals is discussed in [37]. In general,
this number is highly sensitive to the accuracy parameter, while in-
creasing the prescribed confidence has a lower impact on the num-
ber of samples.

4.2.2 Bayesian Hypothesis Testing
We use hypothesis testing as an alternative stopping criterion for

termination. Hypothesis Testing [22, 25] is a statistical method for
deciding, with enough confidence, whether the unknown probabil-
ity µ is greater than a given threshold θ (H0 : µ ≥ θ). Alternatively,
we may want to evaluate the complementary hypothesis H1 : µ < θ .

Similar to estimation, hypothesis testing starts from prior knowl-
edge and updates it with the information obtained through sam-
pling until enough evidence is provided in support of either H0 or
H1. The procedure aims at estimating the odds for hypothesis H0
versus H1, which can be computed as follows [37]:

Pr(H0|S)
Pr(H1|S)

=
Pr(S|H0)

Pr(S|H1)
· Pr(H0)

Pr(H1)
(9)

where S is the set of samples collected, and Pr(H0) and Pr(H1)
are the probability of the hypothesis to be true given the prior
knowledge, respectively; Pr(H0) = 1−FB(α,β)(θ) and Pr(H1) =

1−Pr(H0).
The ratio Pr(S|H0)/Pr(S|H1) is called a Bayes factor and can

be used as a measure of relative confidence in H0 versus H1 [25,
37], i.e., it quantifies how many times H0 is more likely to be true
than H1 given the evidence collected through sampling. The val-
ues Pr(H0|S) and Pr(H1|S) represent the probability of the two
hypotheses to be true after samples S have been collected. Since
all the information gathered from the samples is embedded in the
posterior distribution, the latter is used to compute Pr(H0|S) =
1−FB(α ′,β ′)(θ) and Pr(H1|S) = 1−Pr(H0|S). Thus, the Bayes
factor B corresponding to the posterior odds for hypothesis H0 can
be computed from Equation (9) after some algebraic simplifications
as:

B =
Pr(S|H0)

Pr(S|H1)
=

Pr(H1)

Pr(H0)
·
(1

FB(α ′,β ′)(θ)
−1
)

(10)

If no preference among the two hypotheses is provided by the prior,
e.g., when a non-informative prior is used, the initial value of the
ratio Pr(H1)/Pr(H0) is 1.

Equation (10) can be used to define a sequential stopping crite-
rion. In particular, sampling can stop when the odds in favor of
one of the hypotheses (the Bayes factor B) is greater than a given
threshold T , i.e., when a relative confidence of at least T is obtained
from data to support one of the hypotheses. A precise quantifica-
tion of the number of samples needed to achieve convergence for
Bayesian hypothesis testing is discussed in [35, 37]. In general, hy-

pothesis testing is faster than estimation, although its performance
degrades when θ is close to the (unknown) probability µ [35].

5. INFORMED SAMPLING

Algorithm 1: Statistical Symbolic Execution with Informed
Sampling

1 exploredD← 0;
2 successD← 0;
3 repeat
4 numSamples← 0;
5 numSuccess← 0;
6 successPCs←{};
7 exploredPCs←{};
8 repeat
9 π ←MonteCarloSample();

10 let PC be the path condition of path π;
11 numSamples← numSamples+1;
12 exploredPCs← exploredPCs∪{PC};
13 if π |= φ then
14 numSuccess← numSuccess+1;
15 successPCs← successPCs∪{PC};
16 end
17 updatePrior();
18 until StopCombinedEst()∨numSamples≥ NI ;
19 exploredD← exploredD+](exploredPCs);
20 successD← successD+](successPCs);
21 if StopCombinedEst() then
22 return;
23 end
24 pruneOutPaths(exploredPCs);
25 until exploredD = domainSize;
26 return;

A weakness of statistical analysis is the large number of paths
that may need to be explored and the slow convergence to a re-
sult, within the desired confidence. To address this problem, we
introduce here Informed Sampling (IS), an iterative technique that
combines Monte Carlo sampling with pruning of already explored
paths. Furthermore, to obtain a precise estimation of the proba-
bility of satisfying property φ , IS combines information from two
sources: the first is based on the exact probabilistic analysis (de-
scribed in Section 2) for the pruned paths and the second is based
on Bayesian inference (as described in Section 4.2) for the sampled
paths. We describe IS in more detail below.

5.1 Algorithm
Symbolic execution with Informed Sampling is described at a

high level by Algorithm 1. Assume for simplicity that we are in-
terested in the success probability of the program with respect to a
property φ (the algorithm can also be applied to failure probabil-
ity with only minor modifications). NI is a pre-specified number
of samples per iteration. Assume also that we treat the grey paths
optimistically.

The algorithm works through a number of iterations (lines 3–25).
At each iteration, IS first tries to tackle the verification problem
through Bayesian inference. For this task, it takes a pre-specified
number of Monte Carlo samples (lines 8–18) as dictated by the
conditional probabilities computed from the code. At each itera-
tion, the algorithm keeps track of the following values:
• numSamples counts the number of sampled paths

• numSuccess counts the number of sampled paths that lead to
success

• exploredPCs stores the PCs of explored paths
• successPCs stores the PCs of explored paths that lead to suc-

cess

The algorithm also computes exploredD and successD which
keep count of total explored inputs and explored inputs that lead
to success. These values are computed using model counting (lines
19–20) and are used in the combined estimators as described below.

As before we use as stopping criteria for sampling either
Bayesian estimation or Hypothesis testing (high-level procedure
StopCombinedEst() in lines 18 and 21). However for IS we use
combined estimators that enhance the Bayesian inference with pre-
cise information obtained from symbolic paths. If the (combined)
Bayesian estimator converges to the desired confidence or if the
(combined) estimated probability satisfies the hypothesis, this re-
sult is reported and the analysis stops. The iterative process can
also terminate when the whole domain was analyzed (line 25).

After each iteration the symbolic paths explored so far are pruned
out of the execution tree (line 24) and analyzed using the exact
method (Section 2); the results are used to build the combined es-
timator. This improves the efficiency of the inference procedure
because it accounts for all the information obtainable from the path
conditions of explored paths. Indeed, each sampled path has a
path condition which is used in the exact analysis to quantify how
many input values from the domain will follow the execution along
that path. For example, referring to Figure 1, the symbolic path
s0 → s2 → s3 accounts for more concrete program paths than the
path s0 → s1; however this information is ignored by the purely
statistical inference, which treats symbolic paths as concrete paths.

Pruning using Counters. Recall that for each path condition
PC we maintain a counter C(PC) to count the number of solutions.
Initially these counters are computed using off-the-shelf quantifica-
tion procedures such as LattE. At each iteration, IS performs sam-
pling, as guided by the PC counters (see Section 4.1). For each
sampled (non-duplicate) path, with final PC counter n, IS updates
all the counters for the prefixes of PC along the path (to the root
of the symbolic execution tree) by subtracting n, and a new itera-
tion starts (with the updated counters). Thus, for each pruned PC
only a small number of arithmetic operations is required, with no
significant impact on the overall computation time.

At the end of each iteration, the counters keep track of the num-
ber of inputs that need to be sampled to follow that path. If a
counter becomes 0 it means that the sub-tree rooted at that node
has been fully explored, and it does not need to be sampled again.
Therefore we can safely prune it from the search space. If the
counter of the root node becomes 0 the analysis stops, because the
whole domain was analyzed exactly.

After each pruning, exact information is obtained for a fraction
of the input domain. This fraction needs no longer to be considered
for statistical inference, allowing the latter to focus on the remain-
ing part of the domain. Furthermore, the overall confidence in the
result grows, since there is no uncertainty about the fraction of the
domain analyzed exactly.

Estimation with IS. The combined estimator, denoted here as µ̂ ,
is defined through the mixture of an exact estimator, denoted µE ,
and a Bayesian estimator, denoted µ̂B. E refers to the inputs that
follow the paths explored in previous iterations of IS (and can there-
fore be analyzed Exactly), while B refers to the inputs that have not
been explored yet (and therefore can only be used in Bayesian es-
timation). A hat (“ˆ”) denotes an approximate value.

For the input points that have already been explored, we can
compute the exact probability µE . Recall that successD denotes

the number of input points corresponding to the pruned successful
paths and exploredD is the total number of points corresponding to
pruned paths. Then:

µE =
successD

exploredD
(11)

and or the rest of the input domain we have at each iteration just
the Bayesian estimator:

µ̂B =
numSuccess+α

numSamples+α +β
(12)

where for both α and β we use 1/2 as default. By the law of total
probability (Definition 3) we can combine the exact and Bayesian
estimators:

µ̂ = (1− fE) · µ̂B + fE ·µE (13)

where fE is the fraction of the domain that has been pruned out
up to the previous iteration, i.e., exploredD/](D). The number of
samples to take at each iteration is decided according to a sequen-
tial stopping criteria, and it is bounded by the maximum value NI
provided by the user.

Hypothesis Testing with IS. For hypothesis testing recall that
we base the decision on the posterior odds of the hypothesis H0 :
Pr(P |= φ)≥ θ versus H1 : Pr(P |= φ)< θ . For IS we compute the
posterior odds based on a combined estimator similar to the one
described in Equation (13):

µ̂
H0 = (1− fE) · µ̂H0

B + fE ·µH0
E (14)

where µ̂
H0
B is the Bayesian posterior estimator defined in Sec-

tion 4.2.2 for the probability Pr(H0|S). S is the set of samples
taken during the current iteration (i.e., 1− FB(α ′,β ′)(θ), where
α ′ =α+numSuccess and β ′ = β +numSamples−numSuccess are
the parameters of the posterior Beta distribution of the Bayesian es-
timator). µ

H0
E is equal to 1 if the result µE of the partial exact anal-

ysis is greater than or equal to θ , and equal to 0 otherwise; fE is the
fraction of the domain that has been pruned out up to the previous
iteration, as described in the previous section.

Early Termination. We further enhance the IS procedure to
check for additional sufficient termination conditions determined
by the partial exact analysis of pruned paths. Indeed, the actual
value of µ is by definition in the interval:

successD
](D)

≤ µ ≤ 1− failD
](D)

(15)

where failD = exploredD− successD.
We use these lower and upper bounds to test against the hy-

pothesis and decide early termination of the IS procedure. Indeed,
if successD/](D) ≥ θ the hypothesis is necessarily true; while if
1− failD/](D) < θ the hypothesis is necessarily false. In both
cases we stop the iterative process and return the result to the user.
This check is performed in StopCombinedEst().

5.2 Discussion
Combined Estimators are Unbiased and Consistent. The con-

struction of the combined estimator of Equation (13) is an applica-
tion of stratified sampling, where the population (the input domain)
is partitioned into disjoint subsets to be analyzed independently;
the local results are then linearly composed, assigning each one a
weight proportional to the size of the corresponding subset [6]. An
estimator obtained through stratified sampling is unbiased (i.e., its
expected value converges to the measure it estimates) and consis-
tent (i.e., its variance converges to 0 when the number of samples

goes to ∞) if the local estimators used for each subset of the parti-
tion are unbiased and consistent [6].

For the portion of the domain analyzed exhaustively, µE is by
definition the actual measure it estimates. Thus it is trivially un-
biased and consistent (indeed the variance of a number is always
zero). For the portion of the domain subject to statistical estima-
tion, we adopt the standard Bayesian estimator for the parameter of
a Bernoulli distribution. Proofs that it is unbiased and consistent
can be found, for example, in [13, 25, 37]. Thus, the combined
estimator is in turn unbiased and consistent.

Termination. If IS explores the whole domain, that is
exploredD =](D), the process terminates with the same results
as for the exact analysis. Since at each iteration the number of
samples to collect for Bayesian inference is greater than zero, IS is
guaranteed to terminate, in the worst case, when the whole domain
has been analyzed exactly. (Note that we assumed the domain is
finite.)

Faster Convergence for Bayesian Estimation. A benefit of
mixing the Bayesian estimator µ̂B with µE is a faster convergence
to the criterion of Equation (6). Indeed, if an input falls in the por-
tion of the domain analyzed exactly, our estimate is perfectly ac-
curate (with confidence 1) by definition. Otherwise it will provide
confidence δ̂ :

δ̂ = (1− fE) ·δB + fE (16)

Thus, to meet the prescribed confidence δ as a whole, the Bayesian
estimator is required to just satisfy the relaxed confidence δB.

δB ≥
δ − fE
1− fE

(17)

During the first iteration, when fE = 0, δB needs to satisfy the
original convergence criterion of Bayesian estimation (i.e., the pre-
scribed δ). However, with each iteration, fE increases, thus relax-
ing the constraint on δB.

Faster Convergence for Hypothesis Testing. As for Bayesian
hypothesis testing, the process terminates as soon as the odds in
favor of H0 overcome those in favor of H1 by a factor T decided by
the user. To understand the benefit in terms of the convergence rate
provided by the IS estimator of Equation (14), we need to consider
the ratio of the posterior odds Pr(H0|S)/Pr(H1|S). If H0 is actually
true, Pr(H0|S) will converge to 1 (and consequently Pr(H1|S) to 0)
the more samples are collected. The other way around, if H0 is false
Pr(H0|S) will converge to 0 (and Pr(H1|S) to 1). The convergence
of the estimator µ̂H0 can be evaluated again considering fE . Since
after each iteration fE grows, the room for the uncertainty derived
from the use of Bayesian estimation is always bounded by a de-
creasing factor 1− fE . The more execution paths are pruned out
and analyzed exactly, the more such uncertainty is reduced, usually
speeding up the convergence of the combined estimator.

Detecting Errors with Random Exploration. The iterative
pruning of the input domain increases the chances of random ex-
ploration to detect errors. To show this, let us consider an error
path with path condition PCR. Let Bi represent the set of the paths
targeted by random sampling during iteration i, and let Bi+1 rep-
resent the set of paths targeted by sampling during iteration i+ 1.
If the error path is not detected at iteration i, we will show that the
probability of catching PCR is higher at iteration i+1.

Let us assume, for simplicity, that only one path is sampled per
iteration (the worst case for our proof). The probability of sampling
PCR at iteration i is Pr(PCR|Bi) . If it is sampled, then the error has
been detected. Otherwise a sampled path with condition PCi is
removed from Bi. Since Bi+1 = Bi−PCi it follows that at iteration
i+1, the probability Pr(PCR|Bi+1) of catching PCR is higher than

in the previous iteration:

Pr(PCR|Bi) = Pr(PCR|PCi) ·Pr(PCi)+Pr(PCR|Bi+1) ·Pr(Bi+1) (18)

Note that Pr(PCR|PCi) = 0 because we assumed that the sampled
path with PCi was not the error path with PCR, it follows that:

Pr(PCR|Bi+1) =
Pr(PCR|Bi)

Pr(Bi+1)
(19)

Again, assuming that PCR has not been detected yet, necessarily
Bi+1 6= /0 and thus Pr(Bi+1) > 0 . The example in Section 3 illus-
trates this phenomenon: the error is very hard to detect with purely
random exploration but it can be easily detected with IS.

Number of Samples; Incremental Symbolic Execution. The
maximum number of samples to take in each iteration of IS allows
us to select different operation modes for the algorithm. If a very
large number of samples are allowed during each iteration, IS re-
duces to Bayesian inference as described in Section 4.2. On the
other hand, if NI = 1 the impact of the Bayesian estimation be-
comes negligible, since it will almost surely not converge after a
single sample, making IS perform an incremental exact analysis by
selecting, pruning, and analyzing one symbolic path per iteration.

Thus IS can be used to improve on “classical” symbolic execu-
tion by providing for a new kind of incremental analysis where the
next path to be analyzed is selected according to the Monte Carlo
Sampling described in Section 4.1. In this way IS will likely cover
the most probable paths first, computing also the fraction of the
domain these paths cover. This results in an “any time” approach
where it is possible to interrupt the execution when enough of the
input domain has been covered, even if the analysis cannot be ex-
haustively completed within a reasonable time.

Values of NI between the two extremes trade off the effort
Bayesian estimation is allowed to take to converge during a single
iteration with the number of iterations required to converge. Choos-
ing a good value for NI depends on the specific problem. We will
discuss its choice for several applications in Section 6. Another op-
tion is to “adapt” the value of NI with the number of iterations, e.g.,
by starting small to quickly prune out paths with high likelihood of
execution and gradually increasing the value of NI to stress-test the
parts of the state space that have a small likelihood of execution.

False Positives or Negatives. Statistical hypothesis testing, be-
ing a randomized procedure operating on a limited number of sam-
ples, may produce false negatives or positives, i.e., it may reject a
hypothesis that is actually true and vice versa. This problem can
occur especially when the analyzed programs are very large and
the probability of success or failure is close to the extremes (0 or
1) [36]. In the next section we show an instance of the problem. For
Bayesian hypothesis testing, it has been proved that the probability
of obtaining spurious results is bounded by 1/T [37], where T is
the threshold set by the user (see Section 4.2.2).

For IS, pruning reduces the possibility of spurious results since
it limits the possibility of wrong conclusions to the fraction of the
domain analyzed with the Bayesian estimator (1− fE). Also note
that the sufficient conditions that we added to IS, for early termi-
nation with hypothesis testing, do not suffer from incorrect results
because they rely on exact methods. Thus they improve the quality
of the overall approach since if IS terminates due to the sufficient
conditions, its results are always correct.

6. EXPERIENCE
We implemented the statistical symbolic execution techniques

described in this paper in the context of SPF [24], an open-source
toolset. We plan to make our tool available for download. Sampling

is parallelized using a map-reduce algorithm. Path counters are
shared and reused in subsequent sampling phases.

In this section we compare IS with both an exhaustive analysis
and a purely statistical approach. We report on the analysis of the
following software artifacts:

OAE: the Onboard Abort Executive (OAE) [23] software compo-
nent manages the Crew Exploration Vehicle’s ascent abort handling
developed at NASA. OAE has 1400 LOC, 36 input variables rang-
ing over large domains, and fairly complicated logic encoding the
flight rules (a path condition can have approx. 60 constraints). We
are interested in the probability of the OAE not raising a mission
abort command.

MER: models a component of the flight software for JPL’s Mars
Exploration Rovers (MER) [1]; it consists of a resource arbiter and
two user components competing for five resources. MER has 4697
LOC (including the Polyglot framework). The software has an er-
ror (see [1]) and is driven by input test sequences. We analyze two
versions: MER (small) for sequence length 8 and MER (large) for
sequence length 20; the latter cannot be analyzed fully with sym-
bolic execution because of the huge number of execution paths.

Sorting: an implementation of Insertion sort. We calculate the
probability of sorting an array of size n in exactly n(n−1)/2 com-
parisons, i.e., the worst case. A large number of paths need to be
analyzed (n!), but only 1 path leads to the worst case. Despite being
a simple algorithm, this example is very challenging for statistical
techniques due to the low probability of hitting any failure. We
analyze a version for n = 7.

Windy: a standard example in the reinforcement learning com-
munity that involves a robot moving in a grid from a start to a goal
state. A crosswind can blow the robot off course and an added
weight to the robot counter-balances that. We analyze two versions:
Windy (small) has a 5×4 grid and solutions limited to 5 moves, and
Windy (large) has a 9×4 grid and 12 moves. The latter cannot be
analyzed exhaustively with symbolic execution because of the very
large number of paths the robot may follow. We consider reaching
the goal state in the specified number of moves as a success.

OAE was analyzed on a Red Hat Linux 64bit machine with 4Gb
of memory and a 2.8GHz Intel i7 CPU. The other software was an-
alyzed on an Ubuntu Server 12.04.4 LTS 64bit with 16Gb of mem-
ory and a 3.10GHz quad-core Intel Xeon CPU E31220.

Estimation. Table 1 shows some of our results for the proba-
bility estimation problem. δ and ε represent the target confidence
and accuracy, NI is the number of samples per iterations, Iter is the
number of iterations completed during analysis, Estimate is the re-
sult computed, and Time is time consumption in milliseconds. For
all the examples in this table we assume a uniform usage profile for
the inputs and we treat grey paths optimistically.

δ = 1 denotes that IS has been used for incremental exact anal-
ysis (thus computing the actual success probability without uncer-
tainty), while NI = 100000 means that the analysis was purely sta-
tistical (no IS). There are several observations to make:

• For OAE, ε and NI do not seem to play a role in the number of
iterations required, or the time consumption. This is because af-
ter the first iteration, even with 100 samples, more than 99.8% of
the domain is pruned out, and IS achieves the required confidence
quickly. Indeed, OAE has a few “success behavior” paths account-
ing for most of the executions, while the abort paths share a small
probability of being taken under the uniform profile (we will later
report on a different mission profile). Thanks to Monte Carlo sam-
pling, the former are very likely to be sampled, and then pruned,
first. IS is dramatically faster than the purely statistical approach,
and its estimate is also closer to the true value.

Table 1: Estimation results (* means non-convergence, **
means exhaustive analysis)

O
A

E

δ ε NI Iter Estimate Time
1 − 1 3754 0.999999981808025 629,818

0.99 10−2 100 2 0.9998659113123208 42,110
0.99 10−2 1000 1 0.9998659113123208 40,326
0.99 10−3 100 2 0.9998659113123208 42,223
0.99 10−3 1000 2 0.9998659113123208 540,678
0.99 10−3 100000 − 0.9995836802664446 317,074
0.99 10−5 100000 − 0.999990000199996* 31,654,165

M
E

R
(s

m
al

l)

δ ε NI Iter Estimate Time
1 - 1 122 .75 100,420

0.99 10−3 100 9 0.75** 168,414
0.99 10−3 1000 9 0.7499661471528664 210,635
0.975 10−5 100 9 0.7499263416861861 167,695
0.975 10−5 1000 9 0.7499828915718787 211,332
0.99 10−5 100 9 0.7499254209572634 166,871
0.99 10−5 1000 9 0.7499686952166291 210,464
0.99 10−3 100000 − 0.749705005899882* 25,784,373
0.99 10−5 100000 − 0.7510049799004019* 25,803,456

So
rt

in
g

δ ε NI Iter Estimate Time
1 − 1 5040 0.999988 946,681

0.99 10−3 100 68 0.9999069235294118 1,943,537
0.99 10−3 1000 18 0.9999636105960265 1,823,969
0.99 10−5 100 69 0.9999527117647059 2,689,889
0.99 10−5 1000 18 0.9999856615894039 2,195,849
0.99 10−3 100000 - 0.9995836802664446 307,192
0.99 10−5 100000 - 0.999990000199996* 9,113,719

W
in

dy
(s

m
al

l)

δ ε NI Iter Estimate Time
1 − 1 614 0.004073625 70,554

0.99 10−3 100 16 0.004164252291666667 7,348
0.99 10−3 1000 11 0.004073625 8,275
0.99 10−5 100 17 0.004100003958333333 123,204
0.99 10−5 1000 11 0.004073625** 148,843
0.99 10−3 100000 − 0.00438745663560302 1,859,271
0.99 10−5 100000 − 0.004309913801723965* 6,319,183

• MER (small) has several execution paths occurring for roughly
the same number of inputs. IS needs more iterations to prune
them out and achieve the high accuracy and confidence goals (un-
like in the OAE case). However, due to the small number of paths
(122), after 9 iterations at least 99% of the domain is covered,
pushing the convergence of the IS estimator, which outperforms
the Bayesian estimator. Notice also that the latter does not reach
the required confidence for such high accuracy: after 100000 sam-
ples it reaches a confidence of only .5346 and .0058, for ε equal
to 10−3 and 10−5, respectively.
• For Sorting, only NI significantly influences the number of iter-

ations. This reflects the fact that – initially – the 5040 paths are
equally likely, and so we expect the impact of pruning in IS to
be small. This scenario is particularly suitable to Bayesian esti-
mation, which converges for ε = 10−3 after about 2500 samples.
Since we limited NI to smaller values, IS was not able to achieve
convergence by its statistical component until pruning covered
a large portion of the domain. When the accuracy is raised to
ε = 10−5, the Bayesian estimator is not able to converge within
100000 samples (final confidence ∼ 0.864), while for IS increas-
ing the accuracy does not require higher overhead, allowing it
to converge faster than Bayesian. For this problem, a higher NI
would be a reasonable choice, especially for low accuracy.
• Windy is similar to Sorting, since there are many paths, all with

comparable probability, and only a few of them are classified
as success. However, while for Sorting the Bayesian estimator
quickly converged for accuracy 10−3 without observing any fail-
ure, in this case the probability of success is high enough to allow
sampling both types of path. This increases the variance of the
sample, slowing down the statistical estimator. On the other hand,
for IS, thanks to pruning, as soon as the few success paths are col-

lected they are pruned out, reducing the variance of the samples
of subsequent iterations and speeding up convergence.

In summary, IS is particularly effective for problems where a
subset of the execution paths accounts for a large portion of the
inputs. In this case, such paths are likely to be pruned out af-
ter a few iterations increasing the confidence on the partial result.
Also, IS outperforms statistical methods when high accuracy is re-
quired. Finally, if an exact analysis is required for a problem that
would require too much memory to be analyzed with previous ap-
proaches [11], IS can analyze them incrementally, producing in-
termediate results with quantified confidence after each iteration,
though usually taking longer time.

Hypothesis testing. The results for hypothesis testing are shown
in Table 2. θ and T represent the hypothesis (H0 : Pr(P |= φ)≥ θ)
and the confidence threshold to accept or reject H0, and Result is
the result computed (whether or not the hypothesis holds), while
the meanings of the other columns are the same as before. Once
again, we assume a uniform usage profile.

Table 2: Hypothesis testing results (* denotes convergence for
sufficient exact conditions, ** denotes a false positive/negative)

O
A

E

θ T NI Iter Result Time
0.999 105 100 2 true 40,150
0.999 105 1000 1 true 35,458
0.9999 105 100 2 true 40,495
0.9999 105 1000 2 true 168,000
0.999 105 100000 − true 36,295
0.9999 105 100000 − true 362,125

M
E

R
(s

m
al

l)
θ T NI Iter Result Time

0.74999 105 100 4 true* 143,775
0.74999 105 1000 2 true* 541,618

0.9 105 100 1 false* 34,822
0.9 105 1000 1 false 80,266

0.74999 105 100000 − − 25,763,139
0.9 105 100000 − false 79,229

So
rt

in
g

θ T NI Iter Result Time
0.999978 105 100 47 true 1,567,080
0.999978 105 1000 6 true 1,291,770

0.999999999 105 100 61 false 1,931,810
0.999999999 105 1000 7 false 1,567,732
0.9999978 105 100000 − − 9,372,129

0.999999999 105 100000 − false 1,536,449

W
in

dy
(s

m
al

l)

θ T NI Iter Result Time
0.003073625 105 100 1 false** 11,120
0.003073625 105 1000 1 true 110,437
0.004083625 105 100 1 false 10,961
0.004083625 105 1000 3 false* 210,286
0.003073625 105 100000 − true 627,864
0.004083625 105 100000 − − 6,257,120

Our choices of θ are values close to the actual success proba-
bilities, obtained by estimation and as given in Table 1. As ex-
pected [37], hypothesis testing is usually faster than estimation.
However, when θ is very close to the actual probability of success,
Bayesian methods fail to converge within a reasonable amount of
time (results marked with −). IS responds to this situation by re-
quiring more iterations (more rounds of sampling/pruning). Com-
pare, for example, the cases with θ = .9 and θ = .74999 for MER
(small). IS generally performs better than a pure Bayesian testing
(and for some smaller cases the sampling procedure covered, by
chance, the full domain after a just few iterations, producing an ex-
act result). Interestingly, in the first experiment reported for Windy
(small) with NI = 100 we obtained a false negative result. In this
case the Bayesian component of IS converged to a false decision af-
ter the 100 samples produced, by chance, 100 failures. Increasing
the number of samples NI was enough to avoid this error.

Intractable “classic” symbolic execution. Table 3 shows the
results for a second set of experiments where we ran the techniques

Table 3: Hypothesis testing results where “classical” symbolic
execution runs out of memory (* denotes convergence for suffi-
cient exact conditions)

M
E

R
(l

ar
ge

)
θ T NI Iter Result Time

0.2 105 100 1 true 55,004
0.2 105 1000 1 true 287,829
0.35 105 100 15 false* 913,109
0.35 105 1000 1 true 287,372

W
in

dy
(l

ar
ge

)

θ T NI Iter Result Time
10−1 105 100 1 false 30,000
10−1 105 1000 1 false 61,968
10−3 105 100 174 true 6,836,523
10−3 105 1000 7 true 804,979
10−5 105 100 5 true 146,986
10−5 105 1000 1 true 82,998

on the larger examples for which “classical” symbolic execution is
intractable. We show results for the most efficient technique from
the smaller cases, i.e., IS for hypothesis testing. There, IS was
able to converge to a decision within a reasonable amount of time.
Nevertheless, the large number of execution paths of these cases
led for MER (Large) with θ close to the actual success probability
to a false positive result for θ = .35 and NI = 1000; we know it is
a false positive because with NI = 100 we obtained termination for
a sufficient condition check. As already discussed, a false positive
result is possible for statistical testing. IS can mitigate this issue
by leveraging its exact analysis component, as for the case of NI =
100, although, in some cases, even 100 could be enough to make
the Bayesian component of IS converge to the wrong conclusion,
and an even smaller value for NI might be required.

Usage profiles. We briefly mention the impact of the usage
profiles on the probability of satisfying a target property. We an-
alyzed OAE with a different usage profile, where one input vari-
able (thrust) has a Gaussian (normal) distribution. The Gaussian
distribution was approximated by discretizing the domain of thrust
of into 5 segments, which led to 5 usage scenarios with different
probabilities [11].

Under this usage profile, the density of inputs following the “nor-
mal behavior” paths is reduced, requiring more rounds of prun-
ing for IS estimation to converge, even accuracy as low as 10−1.
This results in longer computation time, though still within reason-
able ranges. For example, IS with Bayesian estimation for confi-
dence 0.975 took approx. 50,000 ms in 5 iterations (with 100 or
1000 samples per iteration) while for confidence 0.99 it took ap-
prox. 167,000 ms in 6 iterations.

The source code for all the examples (except OAE) and more
experimental data are available from [9].

7. RELATED WORK
Our work is related to statistical model checking (SMC) [33],

also formulated as a statistical hypothesis testing problem veri-
fied through Wald’s sequential probability ratio test (SPRT) [31].
SPRT does not fix the required number of samples a priori but
uses a sequential approach to decide after each sample whether
to stop or continue. A different hypothesis testing criterion has
been proposed in [28], where the size of the sample set is auto-
matically increased until it allows for satisfying the convergence
criteria. In [15], SMC has been formulated as an estimation prob-
lem, with the number of samples fixed a priori by means of the
Chernoff and Hoeffding bound [16]. Other approaches for decid-
ing the number of samples have been discussed in [28, 36]. Some
of these approaches have been implemented in well-known proba-
bilistic model checkers [18, 32].

In our work we combined Bayesian inference techniques with
exact analysis through the IS technique, which is shown to provide
better performance than the pure Bayesian analysis.

A recent approach related to ours [21] provides automated re-
liability estimation over partial systematic explorations applied to
models. The approach first performs sampling over the model and
then applies invariant inference over the samples. The inferred in-
variant characterizes a partial model which is then exhaustively ex-
plored using (exact) probabilistic model checking, obtaining better
results than (full model) probabilistic and statistical model check-
ing for system models.

The techniques we propose are different. Indeed we focus on the
use of symbolic execution to analyze software from its source code,
while [21] focuses on Markov chain models analyzed through prob-
abilistic model checking. The samples in [21] are used to produce
an approximate simplified model to be analyzed, while instead we
use an iterative process that prunes the execution tree and guides
the sampling towards low-probability paths.

We proposed several techniques for the probabilistic analysis of
programs [2, 11, 12]. The approaches in [11, 12] can only per-
form exact analysis that requires all paths to be evaluated. The
work in [2] addresses the approximate analysis of non-linear con-
straints; we can apply the techniques described here also in that do-
main, using the quantification procedure from [2] instead of model
counting. Another approximate analysis for programs is proposed
in [27]; that also uses sampling of symbolic paths (but no incre-
mental or informed sampling as we do here) and gives bounds on
the probability of events of interest in a program. In more recent
work we studied statistical techniques that target specifically pro-
grams that have nondeterminism (e.g., due to concurrency) [20].
The work also uses hypothesis testing (a simpler form than here)
but its main focus is on deriving optimal schedulers, using also re-
inforcement learning for the most promising scheduler moves.

Our work shares similar goals with guided testing techniques,
which provide heuristics to guide the exploration of a program to-
wards “interesting” paths (to increase coverage or to uncover er-
rors), e.g., [4, 29] and many other works. However such techniques
do not provide statistical guarantees as we do here.

Finally, sampling-based approaches have also been proposed in
the field of probabilistic programming, e.g., [5, 7], though with dif-
ferent techniques and analysis goals.

8. CONCLUSIONS
We described statistical symbolic execution, for the analysis of

software implementations. The technique uses a randomized sam-
pling of symbolic paths with Bayesian estimation and hypothesis
testing. We also proposed Informed Sampling, an iterative ap-
proach that first explores the paths with high statistical significance,
prunes them from the state space and then keeps guiding the exe-
cution along less likely paths. Informed sampling combines sta-
tistical information from sampling with exact analysis for pruned
paths leading to provably improved convergence of the statistical
analysis. The techniques have been implemented in the context of
Symbolic PathFinder and have been shown to be effective for the
analysis of Java programs. In the future we plan to perform further
evaluations and to investigate applications in statistical information
flow analysis. We also plan an in-depth study on probability com-
putations for programs with structured inputs.

9. REFERENCES

[1] D. Balasubramanian, C. S. Păsăreanu, G. Karsai, and M. R.
Lowry. “Polyglot: Systematic Analysis for Multiple State-
chart Formalisms”. In: Tools and Algorithms for the Con-
struction and Analysis of Systems. Vol. LNCS 7795. TACAS
’13. Springer, 2013, pp. 523–529. DOI: 10.1007/978-
3-642-36742-7_36.

[2] M. Borges, A. Filieri, M. d’Amorim, C. S. Păsăreanu, and
W. Visser. “Compositional Solution Space Quantification
for Probabilistic Software Analysis”. In: Proceedings of
the 35th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI ’14. ACM, 2014,
pp. 123–132. DOI: 10.1145/2594291.2594329.

[3] C. Boyapati, S. Khurshid, and D. Marinov. “Korat: Auto-
mated Testing Based on Java Predicates”. In: SIGSOFT Soft-
ware Engineering Notes 27.4 (July 2002), pp. 123–133. DOI:
10.1145/566171.566191.

[4] J. Burnim and K. Sen. “Heuristics for Scalable Dynamic Test
Generation”. In: Proceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software Engineer-
ing. ASE ’08. IEEE Computer Society, 2008, pp. 443–446.
DOI: 10.1109/ASE.2008.69.

[5] A. Chaganty, A. Nori, and S. Rajamani. “Efficiently sam-
pling probabilistic programs via program analysis”. In: Pro-
ceedings of the Sixteenth International Conference on Arti-
ficial Intelligence and Statistics. 2013, pp. 153–160.

[6] R. Chambers and R. Clark. An Introduction to Model-Based
Survey Sampling with Applications. Oxford Statistical Sci-
ence Series. OUP Oxford, 2012. ISBN: 9780191627903.

[7] G. Claret, S. K. Rajamani, A. V. Nori, A. D. Gordon, and
J. Borgström. “Bayesian Inference Using Data Flow Analy-
sis”. In: Proceedings of the 2013 9th Joint Meeting on Foun-
dations of Software Engineering. ESEC/FSE 2013. ACM,
2013, pp. 92–102. DOI: 10.1145/2491411.2491423.

[8] J. A. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida.
“Effective lattice point counting in rational convex poly-
topes”. In: Journal of Symbolic Computation 38.4 (Oct.
2004), pp. 1273–1302. DOI: 10.1016/j.jsc.2003.
04.003.

[9] A. Filieri, C. S. Păsăreanu, and W. Visser. Statistical ana-
lyzer for SPF. http://www.iste.uni-stuttgart.
de/rss/people/filieri/2014-fse-jpf.

[10] A. Filieri, C. Ghezzi, and G. Tamburrelli. “A formal ap-
proach to adaptive software: continuous assurance of non-
functional requirements”. In: Formal Aspects of Computing
24.2 (2012), pp. 163–186. DOI: 10.1007/s00165-011-
0207-2.

[11] A. Filieri, C. S. Păsăreanu, and W. Visser. “Reliability Anal-
ysis in Symbolic Pathfinder”. In: Proceedings of the 2013 In-
ternational Conference on Software Engineering. ICSE ’13.
IEEE Press, 2013, pp. 622–631. DOI: 10.1109/ICSE.
2013.6606608.

[12] J. Geldenhuys, M. B. Dwyer, and W. Visser. “Probabilistic
Symbolic Execution”. In: Proceedings of the 2012 Interna-
tional Symposium on Software Testing and Analysis. ISSTA
’12. ACM, 2012, pp. 166–176. DOI: 10.1145/2338965.
2336773.

[13] A. Gelman et al. Bayesian Data Analysis, Third Edition.
Chapman & Hall/CRC Texts in Statistical Science. Taylor
& Francis, 2013. ISBN: 9781439840955.

[14] J. H. Halton. “A retrospective and prospective survey of the
Monte Carlo method”. In: SIAM Review 12.1 (Jan. 1970),
pp. 1–63. DOI: 10.1137/1012001.

[15] T. Herault, R. Lassaigne, F. Magniette, and S. Peyron-
net. “Approximate Probabilistic Model Checking”. In: Ver-
ification, Model Checking, and Abstract Interpretation.
Vol. LNCS 2937. VMCAI ’04. Springer, 2004, pp. 73–84.
DOI: 10.1007/978-3-540-24622-0_8.

[16] W. Hoeffding. “Probability Inequalities for Sums of
Bounded Random Variables”. In: Journal of the American
Statistical Association 58.301 (Mar. 1963), pp. 13–30. DOI:
10.1080/01621459.1963.10500830.

[17] J. C. King. “Symbolic Execution and Program Testing”. In:
Commun. ACM 19.7 (July 1976), pp. 385–394. DOI: 10.
1145/360248.360252.

[18] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM
4.0: Verification of Probabilistic Real-Time Systems”. In:
Computer Aided Verification. Vol. LNCS 6806. CAV ’11.
Springer, 2011, pp. 585–591. DOI: 10.1007/978- 3-
642-22110-1_47.

[19] D. V. Lindley. “The Present Position in Bayesian Statistics”.
In: Statistical Science 5.1 (Mar. 1990), pp. 44–89. DOI: 10.
1214/ss/1177012262.

[20] K. Luckow, C. S. Păsăreanu, M. Dwyer, A. Filieri, and
W. Visser. “Probabilistic Symbolic Execution for Nonde-
terministic Programs”. In: Proceedings of the 2014 29th
IEEE/ACM International Conference on Automated Soft-
ware Engineering. ASE ’14. 2014.

[21] E. Pavese, V. A. Braberman, and S. Uchitel. “Automated re-
liability estimation over partial systematic explorations”. In:
Proceedings of the 35th International Conference on Soft-
ware Engineering. ICSE ’13. 2013, pp. 602–611. DOI: 10.
1109/ICSE.2013.6606606.

[22] W. Pestman. Mathematical Statistics. De Gruyter Textbook.
De Gruyter, 2009. ISBN: 9783110208535.

[23] C. S. Păsăreanu et al. “Combining Unit-level Symbolic Ex-
ecution and System-level Concrete Execution for Testing
Nasa Software”. In: Proceedings of the 2008 International
Symposium on Software Testing and Analysis. ISSTA ’08.
ACM, 2008, pp. 15–26. DOI: 10 . 1145 / 1390630 .
1390635.

[24] C. S. Păsăreanu et al. “Symbolic PathFinder: integrating
symbolic execution with model checking for Java bytecode
analysis”. In: Automated Software Engineering 20.3 (Sept.
2013), pp. 391–425. DOI: 10 . 1007 / s10515 - 013 -
0122-2.

[25] C. Robert. The Bayesian Choice: From Decision-Theoretic
Foundations to Computational Implementation. Springer
Texts in Statistics. Springer, 2007. ISBN: 9780387715988.

[26] C. Robert and G. Casella. Monte Carlo Statistical Methods.
Springer Texts in Statistics. Springer-Verlag, 2010. ISBN:
9781441919397.

[27] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. “Static
Analysis for Probabilistic Programs: Inferring Whole Pro-
gram Properties from Finitely Many Paths”. In: Proceedings
of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’13. ACM,
2013, pp. 447–458. DOI: 10.1145/2491956.2462179.

[28] K. Sen, M. Viswanathan, and G. Agha. “On Statistical
Model Checking of Stochastic Systems”. In: Computer
Aided Verification. Vol. LNCS 3576. CAV ’05. Springer,
2005, pp. 266–280. DOI: 10.1007/11513988_26.

http://dx.doi.org/10.1007/978-3-642-36742-7_36
http://dx.doi.org/10.1007/978-3-642-36742-7_36
http://dx.doi.org/10.1145/2594291.2594329
http://dx.doi.org/10.1145/566171.566191
http://dx.doi.org/10.1109/ASE.2008.69
http://dx.doi.org/10.1145/2491411.2491423
http://dx.doi.org/10.1016/j.jsc.2003.04.003
http://dx.doi.org/10.1016/j.jsc.2003.04.003
http://www.iste.uni-stuttgart.de/rss/people/filieri/2014-fse-jpf
http://www.iste.uni-stuttgart.de/rss/people/filieri/2014-fse-jpf
http://dx.doi.org/10.1007/s00165-011-0207-2
http://dx.doi.org/10.1007/s00165-011-0207-2
http://dx.doi.org/10.1109/ICSE.2013.6606608
http://dx.doi.org/10.1109/ICSE.2013.6606608
http://dx.doi.org/10.1145/2338965.2336773
http://dx.doi.org/10.1145/2338965.2336773
http://dx.doi.org/10.1137/1012001
http://dx.doi.org/10.1007/978-3-540-24622-0_8
http://dx.doi.org/10.1080/01621459.1963.10500830
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1214/ss/1177012262
http://dx.doi.org/10.1214/ss/1177012262
http://dx.doi.org/10.1109/ICSE.2013.6606606
http://dx.doi.org/10.1109/ICSE.2013.6606606
http://dx.doi.org/10.1145/1390630.1390635
http://dx.doi.org/10.1145/1390630.1390635
http://dx.doi.org/10.1007/s10515-013-0122-2
http://dx.doi.org/10.1007/s10515-013-0122-2
http://dx.doi.org/10.1145/2491956.2462179
http://dx.doi.org/10.1007/11513988_26

[29] K. Taneja, T. Xie, N. Tillmann, and J. de Halleux. “eXpress:
Guided Path Exploration for Efficient Regression Test Gen-
eration”. In: Proceedings of the 2011 International Sympo-
sium on Software Testing and Analysis. ISSTA ’11. ACM,
2011, pp. 1–11. DOI: 10.1145/2001420.2001422.

[30] UC Davis, Mathematics. LattE. http://www.math.
ucdavis.edu/~latte.

[31] A. Wald. “Sequential Tests of Statistical Hypotheses”. In:
The Annals of Mathematical Statistics 16.2 (June 1945),
pp. 117–186. DOI: 10.2307/2235829.

[32] H. L. S. Younes. “Ymer: A Statistical Model Checker”. In:
Computer Aided Verification. Vol. LNCS 3576. CAV ’05.
Springer, 2005, pp. 429–433. DOI: 10.1007/11513988_
43.

[33] H. L. S. Younes and D. J. Musliner. “Probabilistic plan ver-
ification through acceptance sampling”. In: AIPS-02 Work-
shop on Planning via Model Checking. Apr. 2002, pp. 81–
88.

[34] H. L. S. Younes and R. G. Simmons. “Probabilistic Verifi-
cation of Discrete Event Systems Using Acceptance Sam-
pling”. In: Computer Aided Verification. Vol. LNCS 2404.
CAV ’02. Springer, 2002, pp. 223–235. DOI: 10.1007/3-
540-45657-0_17.

[35] H. L. S. Younes, M. Kwiatkowska, G. Norman, and D.
Parker. “Numerical vs. statistical probabilistic model check-
ing”. In: International Journal on Software Tools for Tech-
nology Transfer 8.3 (2006), pp. 216–228. DOI: 10.1007/
s10009-005-0187-8.

[36] P. Zuliani, C. Baier, and E. M. Clarke. “Rare-event Verifi-
cation for Stochastic Hybrid Systems”. In: Proceedings of
the 15th ACM International Conference on Hybrid Systems:
Computation and Control. HSCC ’12. ACM, 2012, pp. 217–
226. DOI: 10.1145/2185632.2185665.

[37] P. Zuliani, A. Platzer, and E. M. Clarke. “Bayesian statistical
model checking with application to Stateflow/Simulink veri-
fication”. In: Formal Methods in System Design 43.2 (2013),
pp. 338–367. DOI: 10.1007/s10703-013-0195-3.

http://dx.doi.org/10.1145/2001420.2001422
http://www.math.ucdavis.edu/~latte
http://www.math.ucdavis.edu/~latte
http://dx.doi.org/10.2307/2235829
http://dx.doi.org/10.1007/11513988_43
http://dx.doi.org/10.1007/11513988_43
http://dx.doi.org/10.1007/3-540-45657-0_17
http://dx.doi.org/10.1007/3-540-45657-0_17
http://dx.doi.org/10.1007/s10009-005-0187-8
http://dx.doi.org/10.1007/s10009-005-0187-8
http://dx.doi.org/10.1145/2185632.2185665
http://dx.doi.org/10.1007/s10703-013-0195-3

	Introduction
	Background
	Symbolic Execution
	Probability Theory
	Probabilistic Analysis
	Quantification Procedure

	Example
	Statistical Symbolic Execution
	Monte Carlo Sampling of Symbolic Paths
	Bayesian Inference and Stopping Criteria
	Bayesian Estimation
	Bayesian Hypothesis Testing

	Informed Sampling
	Algorithm
	Discussion

	Experience
	Related Work
	Conclusions
	References

