
Automated Design of Self-Adaptive Software
with Control-Theoretical Formal Guarantees

Antonio Filieri
University of Stuttgart
Stuttgart, Germany

Henry Hoffmann
University of Chicago

Chicago, USA

Martina Maggio
Lund University
Lund, Sweden

ABSTRACT
Self-adaptation enables software to execute successfully in
dynamic, unpredictable, and uncertain environments.

Control theory provides a broad set of mathematically
grounded techniques for adapting the behavior of dynamic
systems. While it has been applied to specific software con-
trol problems, it has proved difficult to define methodologies
allowing non-experts to systematically apply control tech-
niques to create adaptive software. These difficulties arise
because computer systems are usually non-linear, with vary-
ing workloads and heterogeneous components, making it dif-
ficult to model software as a dynamic system; i.e., by means
of differential or difference equations.

This paper proposes a broad scope methodology for auto-
matically constructing both an approximate dynamic model
of a software system and a suitable controller for managing
its non-functional requirements. Despite its generality, this
methodology provides formal guarantees concerning the sys-
tem’s dynamic behavior by keeping its model continuously
updated to compensate for changes in the execution envi-
ronment and effects of the initial approximation.

We apply the methodology to three case studies, demon-
strating its generality by tackling different domains (and dif-
ferent non-functional requirements) with the same approach.
Being broadly applicable and fully automated, this method-
ology may allow the adoption of control theoretical solutions
(and their formal properties) for a wide range of software
adaptation problems.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Design—Methodologies;
I.6.5 [Computing Methodologies]: Model Develop-
ment—Modeling methodologies

General Terms
Design, Experimentation, Theory, Performance, Reliability

Keywords
Adaptive software, control theory, dynamic systems, non-
functional requirements, run-time verification.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. INTRODUCTION
The growing complexity of computing systems is placing

increased burden on application developers. This situation
is made worse by the dynamic nature of modern systems,
which can experience sudden and unpredictable changes;
e.g., application workload fluctuations and system compo-
nent failure. It is increasingly up to software engineers to
manage this complexity and ensure applications operate suc-
cessfully in dynamic environments.

The use of autonomic or self-adaptive techniques has been
proposed to help engineers manage this burden. Such sys-
tems modify their own behavior to maintain goals in re-
sponse to unpredicted changes. While adaptation of an ap-
plication’s functional aspects (i.e., semantic correctness) of-
ten requires human intervention, its non-functional aspects
(such as reliability, performance, energy consumption, and
cost) represent an important and challenging opportunity
for applying self-adaptive techniques. For example, cus-
tomers require continuous assurance of agreed performance
and quality levels. These non-functional aspects can be
managed by mapping them into specific quantitative proper-
ties. These properties can be measured and used to trigger
adaptations guaranteeing requirements are met even in the
face of unforeseen environmental fluctuations [11].

Such measurement-driven adaptation has been studied for
decades in the context of control theory. Control systems
have achieved widespread usage in many engineering do-
mains which interact with the physical world. In such sys-
tems, the controller measures quantitative feedback from a
sensor (e.g., a speedometer), and determines how to tune
an actuator (e.g., a fuel intake) to effect the controlled plant
(e.g., an engine). One major advantage of using control the-
ory is that such techniques emit analytical guarantees of the
system’s dynamic behavior. In principle, adaptable software
can be considered a controllable plant allowing control the-
ory to be applied to self-adaptive software systems.

While researchers have applied notions from control the-
ory to software systems, the control of software can still be
considered in its very preliminary stage. There are many
challenges that must be overcome to advance the applica-
tion of control theory to software systems and many of these
challenges arise from the difficulty of modeling the controlled
systems [16, 17, 72]. Specifically, software applications have
complex, often non-linear, interactions with the hardware
and system software that support their execution. In ad-
dition, dynamic changes, due to maintenance or workload
fluctuations, may invalidate a previously effective model.

This difficulty in defining concise and precise models of
software behavior usually leads to the design of controllers
focused on particular operating regions or conditions, or ad
hoc solutions which address specific computing problems us-
ing control theory, but do not generalize [51, 64, 65]. For ex-
ample, Hellerstein et al. define a controller for .NET thread
pools that is not straightforwardly adapted to other archi-
tectures, though the high level task is quite similar [29]. Fur-
thermore, this lack of generality requires application devel-
opers to spend significant development time designing and
implementing control systems. Thus, there is a need for gen-
eralized methods which can automatically synthesize control
systems that compensate for shortcomings in system models
due to non-linear component interaction or dynamic fluctu-
ations in the environment.

We address this need by presenting a methodology which
automatically builds suitable system models and then uses
those models to synthesize a controller suitable for the self-
adaptive management of non-functional application require-
ments. Given a software system and a non-functional
requirement (e.g., performance, accuracy, energy), our
methodology first uses a training phase to generate a linear
model of the system and then synthesizes a configurable con-
troller. The controller overcomes potential non-linearities
using a Kalman filter to adapt the linear model dynami-
cally. In addition, for drastic changes in system behavior,
the controller incorporates a change-point detection strategy
to trigger an online model rebuilding phase. This method-
ology is general in the sense that it allows users to apply
control theoretic techniques to a variety of scenarios with-
out requiring the users to be control experts. Thus, gen-
eral users can benefit from the formal guarantees of control
systems without being experts themselves. Critically, the
methodology synthesizes these controllers without a priori
knowledge of system.

We evaluate our methodology in two ways. First, we per-
form a formal assessment of the guarantees it provides. Sec-
ond, we perform an empirical assessment of the methodology
on three different software applications: video compression,
energy efficient resource provisioning, and dynamic binding
and delegation. Similar problems appear as case studies in
the literature concerned with self-adaptive software [61], and
are here dealt with using our generalized approach.

2. CONTROLLING SOFTWARE
Our goal is to ease the development of self-adaptive soft-

ware systems by automatically synthesizing a control system
capable of managing non-functional aspects of the software’s
behavior. Toward that end, this section presents background
on essential properties of self-adaptive software and relates
them to analogous concepts in control theory.

We begin with an existing software system and some non-
functional aspect which we want the software to self-manage.
We assume no knowledge of the internals of the software sys-
tem. Instead, we assume that 1) the system allows quantita-
tive measurement of the specified non-functional aspect and
2) there is some tunable parameter of the system that affects
that aspect. Our methodology first derives a model map-
ping the parameter’s settings into expected feedback. Then,
the methodology synthesizes a control system that uses the
derived model to ensure the specified aspect achieves the
desired quality of service.

We therefore refer to the adaptable software as our plant.
The combination of the original software and synthesized
controller is called the controlled system. The controller con-
tinuously determines the value of a control variable, which
represents a setting for the tunable parameter.

We assume that the software’s user expresses a goal, or
setpoint, representing the operating target for the specified
non-functional aspect of the controlled system, e.g. failure
probability, response time, energy consumption, or a conve-
nient combination thereof. From the perspective of software
engineering, a controller should be able to provide the fol-
lowing properties [23, 28]:

• Setpoint Tracking. The self-adaptive system should
achieve the user-specified setpoint. Furthermore, if a
user changes the setpoint, the controller should drive
the system toward a new setting satisfying the new re-
quirement. For example, consider a system that self-
manages the quality of a video streaming service. The
system may have one setpoint for premium users, who
receive high definition quality, and another for normal
users, who are served with reasonable quality depend-
ing on available system resources. Setpoint tracking
refers to the property that the self-adaptive system
achieves the goal.
• Disturbance rejection. Disturbance rejection refers to

the property that the self-adaptive system maintains
the setpoint despite unpredictable deviations from ex-
pected behaviors; e.g., fluctuating load conditions or
hardware failures. In addition, the system should not
react to short-lived, transient external forces. For ex-
ample, a controlled software system should not react
to every cache miss, or the occasional page fault. In-
stead, a self-aware system should be able to distinguish
between a condition of chronic page faults that effect
performance and a single page fault that will not have
a lasting effect on the system.
• Robustness to inaccurate measurements. Quantita-

tive assessment of the running system usually relies
on monitoring and/or other measurement procedures.
Each of these might be subject to temporary biases,
be affected by noise, or might require a certain time to
converge to a convenient accuracy. A controller should
provide a reasonable behavior even in presence of tran-
sitory errors on measured values. Besides reducing the
sensitivity to measurement errors, robustness allows
for the use of less invasive monitoring instruments,
sometimes required for high accuracy but expensive
in terms of performance overhead.

Not surprisingly, all of these properties have counterparts
in control theory. In particular they can be mapped to (a
combination of) the following four properties of the con-
trolled system [28]:

• Stability. A control system is asymptotically stable if
there exists an equilibrium point to which the system
tends; i.e., for any given input, the output converges
to a specific value (within a convenient accuracy). As
time tends to infinity, the distance to the equilibrium
point tends to zero. If the equilibrium point is deter-
mined by a setpoint, whenever the setpoint is reach-
able, an asymptotically stable system will converge to
the setpoint while an unstable system would not.

• Absence of overshooting. An overshoot occurs when
the system exceeds the setpoint prior to convergence.
• Low settling time. Settling time refers to the time re-

quired for the controlled system to reach the setpoint.
• Robustness. A robust control system converges to the

setpoint despite variations in the initial model. This
property defines how well the system will react to dis-
turbances and inaccurate measurements.

One advantage of using control systems in self-adaptive soft-
ware is that the above four properties of a controller can be
guaranteed analytically given the mathematical definition of
the control system. Thus, a self-adaptive system based on
control can provide the user with quantitative guarantees on
its convergence, the time to convergence, and its robustness
in the face of errors and noise.

Since the advent of autonomic computing [35, 44] and
the increasing popularity of self-adaptive software both in
research and industry [26, 61], many software controllers
adopted the popular feedback loop scheme [10]. However, in
most of these cases the similarities with control theory end
with the name. Indeed, the use of control theory requires
modeling software behavior as a dynamic system; i.e. by
means of a system of differential or difference equations.

Abstracting software behavior as a dynamic system is in
general a non-trivial task, requiring mathematical skills and
expertise not mastered by most software engineers. Model
identification methodologies could reduce such difficulty. On
the other hand, the availability of a broad set of off-the-shelf
identification procedures could lead to accurate models, but
with a complexity that makes them quite hard to control [8].

The next section describes our methodology for automati-
cally synthesizing a control system that provides these prop-
erties for some non-functional aspect of a software system.

3. CONTROL METHODOLOGY
This section describes our methodology for automatically

devising controllers for adaptable software systems. Users
provide the initial software system and indicate a tunable
parameter, or control variable, that can change the dynamic
behavior of the system. Additionally, the users should spec-
ify a non-functional requirement for the system to control.
Critically, the methodology needs no prior knowledge of the
tunable parameter’s effects on the specified non-functional
aspect. Instead, an appropriate model and control system is
automatically devised by the methodology. For example, a
user might specify a web service as the software, the number
of servers allocated to the service as the tunable parameter,
and the response time as the aspect to be controlled. Given
these inputs, our methodology will devise a controller that
guarantees the desired response by dynamically tuning the
server allocation based on measured performance feedback.

The methodology works in two phases, as illustrated in
Fig. 1. First, it profiles the software system (the block
labeled MB in the figure) to build a model mapping pa-
rameter settings into feedback measurements. Second, the
methodology uses this model to synthesize a control system
(labeled C(z)) capable of managing the software’s desired
non-functional behavior. Different controllers can be syn-
thesized, which trade increasing computational complexity
for increased robustness to approximations in the model or
unpredictable environmental changes.

3.1 Model Building Phase
Our methodology first builds a model of the system to

be controlled. It starts by testing a set of systematically
sampled values of the control variable and measuring the ef-
fect on the specified non-functional requirement. This pro-
cess produces a mapping of variable setting to measured
feedback. Continuing the web example, model identification
measures response time for different numbers of servers.

The model building phase, uses ARPE [53] to build a first
order model of the reaction to the control variable. ARPE
is based on linear regression and we configure it to identify
a model of the form:

µ(k) = α · η(k − 1) (1)

where µ is our measured effect and η is the control variable
setting. ARPE determines the value of α, which is then used
to synthesize the control system.

The linear model given by (1) may not capture small vari-
ations that arise in real systems and it does not deal with
abrupt changes in the operating point, like one server becom-
ing unreachable in the platform due to hardware or network
failures. However, there are many cases where simple linear
models effectively capture a trend. For example, increasing
the number of servers allocated in our web service exam-
ple will always speed it up until it reaches the application’s
maximum parallelism, then the computation speed will not
increase. To be effective, the model does not need to cap-
ture the exact relationship between the number of servers
and the speedup.

To overcome potential errors in the model, our method-
ology generates three different control systems. Each repre-
sents a tradeoff between the computational cost of the con-
troller and its robustness. The first controller has the lowest
computational cost and is robust as long as the model cap-
tures the trend. The second controller requires more compu-
tation, but it updates the identified model online, allowing
the system to overcome some unmodeled dynamics and non-
linearities. The third controller is the most computationally
expensive but overcomes dramatic errors by deriving a com-
pletely new model online instead of incrementally updating
it. The first controller is described in Section 3.2 and is
used as a baseline to build the second and the third, whose
online correction mechanisms are described in Section 3.3.
The controller’s ability to overcome approximations in the
model is discussed in Section 3.4.

3.2 Controller Synthesis Phase
In the second phase, our methodology performs auto-

mated control synthesis starting from the model identified
in (1). Its goal is to build a control system that tracks the
setpoint, rejects disturbances, and tolerates errors in the
identified model. We will refer to the setpoint as µ̃ and the
measured feedback at time k as µ(k). We can measure how
well the controller is tracking the setpoint by calculating the
error at time k as e(k) = µ̃−µ(k). Small errors indicate the
controller is tracking the setpoint well.

A major advantage of control theory is that it provides
analytical guarantees about the self-adaptive software sys-
tem, and thus, achieves predictable behavior in the pres-
ence of variability. We perform this analysis using the Z-
transform [25], a frequency domain representation of a dis-
crete time control signal (like that in Equation (1)). For
example, C(z) represents the Z-transform of the controller,

MB

C(z)

P (z)
µ̃ +

Control (normal) mode

Model Building mode

η µ

−

Figure 1: Basic scheme for the first control solu-
tion: the control strategy is switched between a first
model building phase and a second normal operation
mode, where the controller uses the model built in
the previous step.

while P (z) represents that of the plant (i.e., the software
system). Here, z−1 is the unit delay, encoding the temporal
shift between the actuation and its effect.

We perform analysis in the Z-domain because doing so
makes it easy to prove that the control system has the de-
sired properties. Transforming the discrete-time system into
a Z-transform equivalent allows us to use the concept of
transfer functions, which capture the input-output relation-
ship of a function. For example, a controller takes the error
signal e(k) as input and outputs a control variable η(k). In
the Z-domain, the relationship between these two values is
expressed as the Z-transform of the output divided by the
Z-transform of the input signal; i.e., C(z) = N(z)/E(z).
Our methodology designs the controller by determining the
function C(z) that achieves the desired properties. It then
performs an inverse transform to produce a set of difference
equations that control the behavior of the self-adaptive soft-
ware. This section describes the process the methodology
uses to devise these control equations.

Given a model identified in the previous phase, the
methodology first determines the Z-transform of the model
given by Equation (1):

z ·M(z) = α ·N(z) (2)

where M(z) is the Z-transform of the discrete time feedback
signal µ(k) and N(z) transforms η(k). The control system
should select η(k) to obtain a certain µ(k) with the proper-
ties described in Section 2 — the guarantee that the system
will reach the selected value in a finite time, possibly smaller
than a prescribed value and the ability to withstand pertur-
bations and variations.

In order to synthesize the controller — once for all possible
systems — we need to express the transfer function P (z) of
the plant (software system). Its input is N(z) while the
output is M(z), therefore P (z) follows from Eq. (2):

P (z) =
M(z)

N(z)
=
α

z
. (3)

Our goal is to design a controller, with transfer function
C(z) that ensures the desired properties of the self-adaptive
software system. The controlled system (the closed-loop
feedback system) has a transfer function G(z) which is af-
fected by both the controller and the plant:

G(z) =
P (z) · C(z)

1 + P (z) · C(z)
. (4)

Thus, G(z) is an arbitrary transfer function representing

the relationship between the setpoint M̃(z) and the feedback
M(z). G(z) represents a family of controllers with different
tradeoffs between their settling time and ability to track
the setpoint while rejecting disturbances. This tradeoff is
determined by the pole p of G(z); i.e., the value for which
the function approaches infinity. For stability, we require
0 ≤ p < 1. Larger values of p produce longer settling times
and greater disturbance rejections. Thus, our methodology
considers transfer functions of the form:

G(z) =
1− p
z − p (5)

Knowing G(z) (from Eq. (5)) and P (z) (from Eq. (3)), we
can solve Eq. (4) to find a family of stable controllers that
will track the desired set point:

C(z) =
(1− p) · z
(1− z) · α (6)

The input of the controller is the error between M̃(z) and
M(z), while its output is N(z).

C(z) =
N(z)

M̃(z)−M(z)
=

(1− p) · z
(1− z) · α. (7)

Given, this Z-transform of the controller, the methodology
simply performs an inverse Z-transform to convert (7) into a
discrete time relationship which can easily be implemented
in software. Recalling that e(k) = µ̃(k)−µ(k), the method-
ology synthesizes the controller as:

η(k + 1) = η(k)− 1− p
α
· e(k + 1) (8)

This equation selects the value of the control variable based
on its previous value and on the error between the desired
effect and its measured value.

The formal assessment of the properties that this control
strategy offers are described in Section 3.4.

3.3 Online Model Updates
This section discusses the three separate mechanisms our

methodology uses to provide robustness despite approxima-
tions in the models. Each technique uses a different strategy
to update the model dynamically in response to system vari-
ations or model errors. The three techniques are 1) implicit
model updating, 2) incremental explicit updating, and 3)
model rebuilding. Each extends the previous one, adding
additional computation to achieve increased robustness.

3.3.1 Implicit Model Update
The first technique is to simply apply the controller of Sec-

tion 3.2 without any explicit update mechanism. This tech-
nique can overcome modeling errors, as long as the model
captures the general trend of the relationship between the
control variable and the measured feedback. This solution
requires simply measuring feedback and computing the con-
trol variable according to (8). Thus, the computational com-
plexity is simply O(1) with a small constant factor.

Remarkably, this simple system is robust, even for ex-
tremely noisy applications as long as there are no drastic
changes in the trend represented in the model. Our empir-
ical evaluations shows one case study where this controller
achieves good results despite a noisy application domain.

3.3.2 Explicit Incremental Update
The second technique works when the online variations

are relatively small; i.e., if the application enters a new
phase with a different computational load. In this case,
the methodology continuously updates an estimate of α (see
(8)) while the controller executes. Using this technique, our
methodology produces an adaptive controller [4] that au-
tomatically adjusts itself to accomplish its mission despite
changes in the system’s dynamics.

The value of α is estimated using a Kalman filter [21, 69].
α’s initial value is the result of the linear regression applied
during the model building phase. In order to track possi-
ble changes in its value, the methodology assumes α varies
slowly. The observations coming from data collected online
are usually noisy, because of possible intrinsic randomness
in the involved phenomena. Assuming the noise is Gaussian
with variance q, the resulting dynamic model used for the
Kalman filter is: as(k + 1) =

η(k)− η(k − 1)

µ(k)− µ(k − 1)
+ ω

α̂(k) = as(k)
(9)

where ω ∼ N (0, q). Using the Kalman filter, the system
estimates the model’s slope at time k as α̂(k). This estimate
of alpha is then substituted into (8), so that the controller
acts with the most recent update to the model. Computing
the Kalman filter updates is still constant time, in terms of
complexity, but with a larger constant factor because the
Kalman filter must be updated at every time step.

Incremental model updates provide robustness despite
shifts and variations in the system, allowing control to be
applied even when no single model can capture all dynamics
of the deployed system. This approach also allows the con-
troller’s linear model to capture unmodeled non-linearities
by constantly updating the slope α of the model at the cur-
rent operating point. This update process is analogous to
approximating a curve with a series of tangent lines.

3.3.3 Model Rebuilding
The third technique provides the greatest robustness at a

cost of the greatest complexity. Consequently, this technique
can handle abrupt variations, like a server failure or other
catastrophic change in the system. This technique augments
the incremental update process by adding a change point
detection procedure to identify when an abrupt change in the
environmental conditions requires to restarts the estimation
procedure described in Section 3.1.

Specifically, the methodology considers a time window of n
control actions. It then computes the average error e1 for the
first n/2 samples and the average error e2 for the second n/2
samples. If |e1−e2| > threshold then the rebuilding phase is
triggered. This technique prevents triggering a rebuild when
the goal is infeasible. This choice, despite its simplicity, is
general enough to work in almost all cases. Regardless, this
component is modular, permitting a different strategy to
be substituted for specific situations. The discussion of the
best change point detection technique is outside the scope
of this work. Rebuilding the model requires sampling the
control variable at different operating points, resulting in
a complexity of O(N), where N is the number of possible
settings for the variable.

Building a new model from scratch when the error is high
ensures that the control system accounts for the current sys-

tem dynamics. Notice that with a reasonably long time hori-
zon, the incremental updates will eventually converge to the
same operating point as the rebuilt model, but we add this
safety feature to increase the convergence speed in the face
of drastic, unpredicted environmental fluctuations. If the
error stays within the acceptable bound, the rebuilding will
never be triggered, and the overhead will not be incurred.

3.4 Formal Assessment
Assessing the properties of the controlled system is mainly

a matter of checking the model and controller equations.
Recalling Section 2, we would like to check that the system
is stable, has a low settling time, does not overshoot, and is
robust to model inaccuracies. This analysis can largely be
performed in the Z-domain.

The Z-transform that represents the controlled system is
given by Equation (5). The first three properties can be
ensured directly from this equation. Enforcing the stability
of the controlled system means ensuring that the pole p is
non-negative and less than 1; i.e., 0 ≤ p < 1. Therefore, our
methodology will only emit poles in this valid range.

The settling time of the controlled system is also deter-
mined from Equation (5). Its inverse transform is

µ(k) = µ̃ · (1− pk) (10)

Thus, as k increases the system approaches µ̃. We define
the settling time as the time it takes the system to achieve
(100−ε)% of the final value of µ̃; i.e., the system’s operating
point is only a small distance from the desired goal. We
refer to this region, which is within ε of the goal, as the ε
confidence zone. Analyzing Equation (10), the first value of
k for which our output enters the ε confidence zone is

kε =
log 0.01ε

log |p| (11)

which means that after kε control steps the signal reaches the
confidence zone. That value depends on ε, which is usually
chosen to be 5%, defining the confidence zone as the interval
in which the controlled variable has reached 95% of its final
value. In that case kε = log 0.05/log |p|, which depends only
on p. Therefore, the position of the pole determines also
how fast the system will reach its equilibrium.

The pole’s value p can be used to trade responsiveness —
how fast the controller reacts, measured as settling time —
and robustness in the face of noise or unmodeled variance in
system behavior. The controller acts based on its model, or
estimation of the effect of its action on the system. As noted
above, even the simplest formulation of the controller can
overcome errors in the model because the system actively
incorporates feedback, which keeps the controller informed
of the effect of its action.

To complete the tradeoff analysis, we show the relation-
ship of the pole p to the error the system can withstand.
Assume our methodology estimates α(k) as α̃(k), but the
true value is α̃(k) · ∆(k). This multiplicative perturbation
is often used to quantify the error of an estimation. For ex-
ample, ∆ = 10 implies that the estimate may be 10 times
smaller or larger than the true value.

We test the largest perturbation that our system can with-
stand while still tracking the setpoint. In other words, we
want to find the values of ∆(k) for which our plant is still
stable. The plant transfer function P (z) is α

z
, therefore,

given a perturbation ∆, it becomes P∆(z) = α̃·∆
z

. The con-

troller transfer function is C(z) = (1−p)·z
(z−1)α̃

. The controlled

system’s transfer function under perturbation becomes:

G∆ =
C(z) · P∆(z)

1 + C(z) · P∆(z)
=

(1− p) ·∆
z + ∆(1− p)− 1

(12)

which is, again, stable and without oscillation if and only if
the two denominator poles are between 0 and 1.

Thus for a stable system, 0 < ∆(k) < 2
1−p , which means

that choosing the value of the pole p defines how safely the
controller acts with respect to model perturbations. If p
is 0.1 the estimation can be inaccurate by a factor of 2.
In conclusion, there is a fundamental tradeoff between the
controller reactivity and the safety with respect to pertur-
bations that the controller can withstand. This tradeoff can
be exploited carefully choosing the pole p.

This relationship between the pole and the tolerable per-
turbation quantifies what we mean when we say the basic
control system will provide implicit model updating as long
as the model captures the trend between the control variable
and the feedback signal. For example, for a pole of p = 0.9,
the system can tolerate a perturbation of 20. Suppose the
methodology provides a model that estimates speedup as a
function of allocated servers. The predicted speedup can be
off by a factor of 20 without affecting setpoint tracking and
stability. The additional techniques of incremental model
updating and model rebuilding allow the controlled system
to update the model and provide these same guarantees in
the face of unmodeled non-linearities (that exceed the toler-
able perturbation) or catastrophic system failures that inval-
idate the model completely. We note that the methodology
outputs control systems providing these guarantees despite
the fact that it begins with no a priori knowledge of the
control variable.

4. EXPERIMENTAL EVALUATION
In this section we describe our experimental evaluation.

We have three different case studies, each demonstrating
one of the three strategies for dynamically updating the con-
troller’s model. We evaluate the first two results by means
of two common metrics, the Mean Square Error (MSE) and
the Mean Average Percentage Error (MAPE). Recalling that
µ̃ represents the goal and µ its actual value, the MSE and
MAPE are defined as

MSE =
1

n

n∑
i=1

[µ̃− µ(i)]2

MAPE =
1

n

n∑
i=1

∣∣∣∣ µ̃− µ(i)

µ(i)

∣∣∣∣ . (13)

Clearly, the MSE and MAPE represent two different metrics
on the system. The MSE is related to the quantity involved,
in the sense that if the signals have a low magnitude, the
MSE can be small but still represent significant errors. On
the contrary, the MAPE is a relative number that determines
how far from optimal the system is. In the third test case we
will show some images of the controller behavior, to make it
easy to visibly grasp the benefits of using our methodology
to automatically devise control strategies.

4.1 Video Compression
The first case study deals with video compression. We

suppose that a camera is recording a video to be streamed
over the network and stored in an archive. Our case study

started thinking of surveillance video but this is not the only
example that we can come up with to justify our choice. For
example, if you have limited channel to stream news video
like BBC or CNN you might want to do something similar.

We divide the video into frames — using one jpg for each
frame — and send the frame separately over the network.
The frames can be preprocessed to reduce the quality of the
image as much as possible, maintaining however some ac-
ceptable standards on the resulting quality. The quality loss
should enable us to reduce the size of the compressed im-
age and therefore the disk space needed to store the frames.
Our primary aim is the image quality reduction that should
follow a certain setpoint.

In this case, our software system is the video encoder.
Our non-functional requirement is the quality of the com-
pressed videos quantified as structural similarity (SSIM) in-
dex [68]. SSIM is a unitless metric that ranges from 0 to 1,
with values closer to 1 indicating images that are very close.
We use SSIM to quantify the quality loss due to compres-
sion. In this example, our control variable is a command
line parameter that indicates the density of the compression
procedure. Given these inputs, we use our methodology to
automatically devise a control system that selects the den-
sity parameter for the next frame based on the measured
SSIM score for the previous frame.

We evaluate our methodology by running the compres-
sion scheme with the synthesized controller for a number
of videos. For each video we compute the average compres-
sion percentage c% per frame, the average SSIM µ, the MSE
and MAPE. The data are reported in Table 1. As can be
seen, with all the videos we achieve a reduction in space
that is superior to 75%, reducing the quality. Our µ value
is sometimes superior to the setpoint, since the image could
not have been reduced further without a too big quality loss
(for example in the 0.8 SSIM version of pumpkin candle).
The procedure is shown to work both with high resolution
videos and with low resolution ones. The reduction in size
is a consequence of the quality setpoint, but it can be noted
that the controller invariably achieves good compression and
setpoint tracking. In fact the MSE and MAPE values are
uniformly low.

4.2 Energy Control
Our second case study also deals with video compression;

however, to demonstrate the generality of the approach, we
now control energy instead of quality. This can be useful to
extend battery life when encoding video on a mobile device,
or to save energy bills when working on servers. We can
influence the energy of the system by changing the speed of
the processor. Recent processors support tradeoffs between
the processor speed and energy, allowing the system to per-
form more work for a greater energy consumption [32]. We
would like to use our methodology to synthesize a controller
which will maintain energy goals.

Again, our software system is the video encoder. Our
non-functional requirement is now the energy consumption
of the video encoder running on our Intel Xeon dual-socket
E5-2690 system. The system is connected to a Wattsup de-
vice that provides real-time feedback of full-system energy
consumption. In this case we measure energy consumption
relative to the default configuration with the processors at
full speed. In this example, our control variable is the pro-
cessor’s clock speed, which is available to software through

Table 1: Video compression through density reduction results. The resulting quality µ is close to the specified
goal. Thanks to the compression, there is an evident reduction in the video size.

video frames resolution goal µ MSE MAPE sizeo sizec c%

obama victory speech 17118 480×270 0.8 0.819 0.00057 2.55% 243.2 Mb 48.5 Mb -80.1%
0.9 0.923 0.00069 2.66% 95.8 Mb -60.6%

samsung advertisment 2112 1920×1080 0.8 0.873 0.01345 12.11% 172.2 Mb 34.6 Mb -79.9%
0.9 0.933 0.00248 12.66% 50.2 Mb -70.8%

amazing nature 7131 1920×1080
0.8 0.842 0.00619 6.76%

804.0 Mb
141.1 Mb -82.4%

0.9 0.926 0.00144 3.30% 230.9 Mb -71.3%

planet earth from space 36997 1920×1080 0.8 0.832 0.00436 6.21% 2408.1 Mb 417.3 Mb -82.7%
0.9 0.924 0.00109 3.08% 834.1 Mb -65.4%

lawnmower 1904 1920×1080 0.8 0.817 0.00044 2.24% 1752.4 Mb 50.4 Mb -97.1%
0.9 0.915 0.00026 1.69% 80.2 Mb -95.4%

night traffic 312 1920×1080 0.8 0.815 0.00798 9.41% 138.2 Mb 8.0 Mb -94.2%
0.9 0.912 0.00157 3.51% 8.8 Mb -93.6%

new york traffic 182 1920×1080 0.8 0.834 0.00321 4.31% 201.8 Mb 21.1 Mb -89.5%
0.9 0.935 0.00142 3.85% 24.2 Mb -88.0%

pumpkin candle 385 1920×1080 0.8 0.898 0.00974 12.30% 250.2 Mb 10.2 Mb -95.9%
0.9 0.908 0.00027 12.20% 10.2 Mb -95.9%

raining 1768 1920×1080 0.8 0.853 0.00287 6.66% 1122.7 Mb 32.2 Mb -97.1%
0.9 0.912 0.00018 1.40% 42.4 Mb -96.2%

speedometer 478 1920×1080
0.8 0.822 0.00736 10.14%

201.5 Mb
15.6 Mb -92.3%

0.9 0.911 0.00033 1.25% 20.2 Mb -90.0%

alpha centaury 1754 1920×1080 0.8 0.835 0.00976 7.51% 129.7 Mb 4.2 Mb -96.7%
0.9 0.921 0.00079 2.27% 8.0 Mb -93.9%

the cpufrequtils package in Linux. With these inputs, we
use our methodology to automatically devise a control sys-
tem that selects the processor speed for the next frame based
on the measured energy consumption of the previous frame.

We evaluate our methodology by running the encoder with
the synthesized controller for several videos. For each video,
we set two targets: the first is an energy efficiency improve-
ment of 5% (1.05×) and the second is 10% (1.10×). We use
our methodology to automatically generate one controller
that uses implicit updating and one that does incremental
updating with the Kalman filter. For each video, we run
each controller for each energy goal and report the results in
Table 2, which shows the average energy efficiency gain (µ),
as well as the MSE and MAPE. As shown in the table, all
videos achieve average energy consumption very close to the
desired value, with uniformly low MSE and MAPE. While
both controllers provide good results, the Kalman filer tends
to have lower error. We note that these energy efficiencies
include the overhead of running the controller itself.

4.3 Service Dynamic Binding
In the context of Service Oriented Architectures (SOA)

dynamic binding is the mechanism allowing abstract oper-
ations to be mapped to concrete components implementing
them. If multiple functionally equivalent implementations
are available for an abstract operation, the selection among
them is usually based on their non-functional properties (e.g.
in [3, 7, 12, 24, 39, 70, 71]). Consider for example a soft-
ware providing a geo-localization service that has to assure
a certain reliability per request µ̃. This means that when-
ever a request is issued, the service can fail to serve it with
a probability of at most 1 − µ̃ [23, 24]. Assume the ab-

stract localization operation could be backed either on the
services S1 Maps or S2 Maps. The availability of each of
these two alternatives may change at runtime, for example
because of changing load conditions, network timeouts, or
maintenance. The goal of the dynamic binder is to decide,
for each incoming request, which alternative to select in or-
der to continuously provide the desired reliability µ̃ in spite
of possible changes in the reliabilities of S1 and S2.

In [24], we faced this problem by manually modeling the
behavior of the system through a discrete time Markov chain
and devising a suitable controller by hand. In this work we
consider the software as a black-box and let our methodology
automatically construct a model of it and generate a suitable
controller1.

We assume a monitoring infrastructure estimating at each
time point k the actual reliability µ(k) of our geo-localization
service and feeding its current value to the controller. The
error is then quantified as the difference between the moni-
tored reliability and its target setpoint (µ̃−µ(k)). The goal
of the controller is to decide the value of the control variable
η, which represents the probability of selecting S1, in order
to keep the error as close as possible to 0 (consequently, the
probability of selecting S2 is 1− η).

Our experiments are reported in Figure 2. All plots show
the initial model building phase (emphasized by a different
background pattern) when the domain of the control vari-
able is explored in order to approximate its relation with

1As explained in [24], having a module able to automatically
decide the dynamic binding problem between two alterna-
tives is enough to solve the multiple alternative problem by
composing multiple instances of it into a binary decision
tree.

Table 2: Results Controlling Energy Consumption.

video frames resolution goal controller µ MSE MAPE

blue sky 1080p25 200 1920×1080

1.05 implicit update 1.049877 0.002274 3.6847%
1.05 kalman 1.050014 0.001555 2.9060%
1.10 implicit update 1.099538 0.001614 2.8696%
1.10 kalman 1.099577 0.001690 2.9043%

crowd run 1080p 500 1920×1080

1.05 implicit update 1.049314 0.000834 2.0883%
1.05 kalman 1.049956 0.000761 2.0075%
1.10 implicit update 1.099038 0.003235 4.3388%
1.10 kalman 1.099530 0.000876 2.0423%

ducks take off 1080p 500 1920×1080

1.05 implicit update 1.049401 0.000607 1.7965%
1.05 kalman 1.049973 0.000566 1.6930%
1.10 implicit update 1.099134 0.002211 2.8744%
1.10 kalman 1.099550 0.000697 1.7568%

factory 500 1920×1080

1.05 implicit update 1.049373 0.001951 3.2981%
1.05 kalman 1.049993 0.001959 3.2854%
1.10 implicit update 1.099119 0.002927 3.9282%
1.10 kalman 1.099566 0.002145 3.2917%

in to tree 1080p 500 1920×1080

1.05 implicit update 1.049288 0.001302 2.6284%
1.05 kalman 1.049909 0.001128 2.4571%
1.10 implicit update 1.099055 0.001951 3.0843%
1.10 kalman 1.099484 0.001256 2.4589%

old town cross 1080p 500 1920×1080

1.05 implicit update 1.049187 0.002158 3.5053%
1.05 kalman 1.049956 0.001468 2.8307%
1.10 implicit update 1.098879 0.001809 3.0349%
1.10 kalman 1.099529 0.001647 2.8690%

pedestrian area 500 1920×1080

1.05 implicit update 1.050360 0.003810 4.7949%
1.05 kalman 1.050268 0.002746 3.8205%
1.10 implicit update 1.099219 0.004492 5.0264%
1.10 kalman 1.099828 0.002946 3.8146%

station2 500 1920×1080

1.05 implicit update 1.049169 0.005904 5.8861%
1.05 kalman 1.050097 0.004919 5.2071%
1.10 implicit update 1.097553 0.005493 5.3570%
1.10 kalman 1.093600 0.004564 4.9187%

sunflower 500 1920×1080

1.05 implicit update 1.049265 0.003481 4.4971%
1.05 kalman 1.049995 0.002960 4.0613%
1.10 implicit update 1.099033 0.003673 4.4298%
1.10 kalman 1.099534 0.003193 4.0465%

tractor 500 1920×1080

1.05 implicit update 1.049481 0.001545 2.9352%
1.05 kalman 1.050077 0.001065 2.3507%
1.10 implicit update 1.099305 0.002122 3.3338%
1.10 kalman 1.099645 0.001208 2.4095%

the measured reliability. Figures 2a and 2b show the step
response of two automatically generated controllers. The
first was configured to have a pole in 0.9, while the second
in 0.3. As expected from the discussion of Section 3, both
of the controllers are stable and converge to the setpoint,
when feasible. The former has a longer settling time than
the latter after a change in the setpoint occurs. Although,
when settled, the two controllers show a coherent behavior,
leading exactly to the same steady-state performance. No-
tice also at time 1300 the goal becomes unfeasible and both
of the controllers keep trying to minimize the error, mov-
ing the actual reliability as close as possible to the setpoint.
Figures 2c and 2d replicates the same scenario of 2a and 2b,
but with the addition of white noise with a standard de-
viation of 10−2 and bounded by [−0.1, 0.1] to each of the
reliabilities of S1 and S2. Despite its longer settling time,
the controller with pole in 0.9 shows a significantly more ef-

fective rejection of the disturbances than the controller with
pole in 0.3. The former is also more effective in avoiding
overshooting the control signals, while the latter introduces
many spikes, temporarily compromising the stability of the
controlled system. This is an empirical example of trade-off
between short settling time and robustness to noise that has
been discussed in Section 3, which requires a careful decision
about the position of the pole. Figure 2e, shows the situa-
tion where the reliability of S1 changes smoothly. Thanks
to the continuous tracking of α enacted by the Kalman fil-
ter, the model of the system is updated online, allowing the
controller to cope with the variations without undergoing a
new identification phase. Finally, in Figure 2f the case of an
abrupt change in the reliabilities of S1 and S2 is reported.
The reliabilities of the two services sharply change at time
1000. After a short time, the change detection mechanism
detects the change and triggers a model rebuilding. The re-

sulting updated model captures the new situation, allowing
for effective control.

A Matlab implementation of this case study is available
online2 for simulation purposes. Numerical mathematical
programming is an established instrument for control ex-
perts to study controller’s performance by simulating dis-
turbances and process dynamics. A Java prototype im-
plementation, based on the Spring Framework [40], can be
downloaded. Spring is an industrial strength lightweight
container for J2EE applications. The monitoring infras-
tructure and the controller have been implemented through
the Spring Aspect Oriented Programming (AOP) features
to show how our methodology can be integrated in existing
applications without an unfeasible burden on the established
development cycle (for further details on the Spring frame-
work, please refer to [40] or the official website3). A running
instance of the Spring implementation is also accessible from
previous url, with a web-interface to ease the demonstration.

5. RELATED WORK
Adaptation is becoming a key concern in software appli-

cations [14, 46]. An adaptive application must select from
many configurations the one that is most appropriate to ob-
tain some specific performance result. There are many ex-
amples, from hardware to software development. The eval-
uation of a new microprocessor design requires studying the
impact of input data sets and workload composition [20].
Compiler-level advancements have been developed to sup-
port adaptive implementations for performance [2, 33, 43,
66] or power [6, 62], and low level architectures are dynam-
ically adjusted and targeted [9, 38, 48, 63]. Another ex-
ample comes from High Performance Computing, where it
is common to change an application parameter to adapt a
running application. In [41] a threshold value is changed
while executing parallel Monte Carlo ocean color simula-
tions, while [18] presents a study on tuning Fast Fourier
Transformations on graphic processing units. Also, Rah-
man et al. [58] and Tiwari et al. [67] studied the effect of
compiler parameters on both performance and power/energy
consumption for scientific computing. A lot of modeling and
tuning effort has recently been devoted to the specific appli-
cation of MapReduce [5, 15, 30, 50, 59, 60].

Self-management techniques are also prominent in indus-
try; e.g., companies like IBM [36] (see projects like the IBM
Touchpoint Simulator, the K42 Operating System [47]), Or-
acle (Oracle Automatic Workload Repository [56]), and Intel
(Intel RAS Technologies for Enterprise [37]).

Control theory [27, 28] is capturing an increasing interest
from the software engineering community that looks at self-
management as a means to meet QoS requirements despite
unpredictable changes of the execution environment [57].
Examples of this trend can be seen in research on control
of web servers [45, 51], data centers and clusters manage-
ment [19, 49], operating systems [13, 34, 42, 47, 52, 54, 55],
and across the system stack [31].

The application of control theory in software engineering,
however, is still in a very preliminary stage. Developing ac-
curate system models for software is in fact hard. Moreover,
strong mathematical skills are needed in order to deal with
complex non-linear dynamics of real systems [17, 28, 72].

2http://www.iste.uni-stuttgart.de/rss/people/
filieri/icse-2014-control
3http://www.springsource.org

These difficulties usually lead to the design of controllers fo-
cused on particular operating regions or conditions and ad
hoc solutions that address a specific computing problem us-
ing control theory, but do not generalize [51, 64, 65]. For
example, in [29] the specific problem of building a controller
for a .NET thread pool is addressed.

This work aims at leveraging the effort of adopting
formally guaranteed control theory methods for software
adaptation by providing a widely applicable push-button
methodology, which reduces the need for strong mathemat-
ical background to devise ad-hoc modeling and control so-
lutions.

Despite their broad variety, most of the methodologies
for the development of self-adaptive applications resembles
a three steps process: data collection and analysis, model-
ing, and control. The glue of the whole process is usually
the software model. It has indeed the purpose of filling the
gap between the possible control choices and the effect they
have on the satisfaction of the requirements. This is not
a novelty of self-adaptive software, but its advent is cast-
ing a new light on the property such model has to satisfy:
while complex, precise quality models have been used in the
past to enable design-time optimization of software architec-
tures [1], such complexity often inhibits their applicability
for runtime adaptation because of the short time available
for verification and control [22].

Our methodology proposes a systematic data collection
procedure enabling the automatic construction of an approx-
imate model. Once built through a first identification phase,
such model can easily be kept updated online and allows for
the application of established and effective control results.

6. CONCLUSION AND FUTURE WORK
This paper proposes a methodology that takes a tunable

variable and feedback mechanism to produce a closed-loop
control strategy that provides formal guarantees for an adap-
tive software system’s dynamic behavior. The methodology
leverages control theory to prove that whenever the desired
behavior is feasible, our controller is capable of selecting the
appropriate variable setting to achieve the goal, despite un-
predicted disturbances and approximate estimates and mea-
surements. Our results show that it is possible to auto-
matically design a controller that trades off responsiveness
and robustness to model perturbations. This methodology
makes it possible for non-experts to build self-adaptive soft-
ware that benefits from mathematically grounded control
theoretic techniques and their formal guarantees without the
background needed to design ad-hoc solutions, which might
however be needed to improve the controller performance on
specific problems.

Our system would work also in case of multiple indepen-
dent control variables and output measures, however we plan
to study an automatic control synthesis technique for cou-
pled Multiple Input Multiple Output (MIMO) systems; i.e.,
when the controller needs to coordinate several control vari-
ables toward the satisfaction of multiple, possibly conflict-
ing, objective requirements. We also plan to incorporate the
synthesis of multiple different controllers and to switch be-
tween those strategies at runtime, allowing to continuously
adjust the trade off between responsiveness and robustness.
In addition, we plan to exploit the capabilities of the Kalman
filter to forecast future values of α and define a proactive
control strategy, to support complex adaptation strategies.

http://www.iste.uni-stuttgart.de/rss/people/filieri/icse-2014-control
http://www.iste.uni-stuttgart.de/rss/people/filieri/icse-2014-control
http://www.springsource.org

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

Setpoint

Actual reliability

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

Reliability S1

Reliability S2

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

Control η

Control 1− η

(a) p = 0.9

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

(b) p = 0.3

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

(c) p = 0.9, Noisy

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

(d) p = 0.3, Noisy

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

(e) p = 0.9, Kalman tracking

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

time [s]

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

time [s]

0 500 1000 1500 2000
0

0.25

0.50

0.75

1

time [s]

(f) p = 0.9, Change point detection

Figure 2: Behavior of the dynamic binding system in different conditions and for different configurations.

7. REFERENCES
[1] A. Aleti et al. “Software Architecture Optimization

Methods: A Systematic Literature Review”. In: Soft-
ware Engineering, IEEE Transactions on 39.5 (2013),
pp. 658–683.

[2] J. Ansel et al. “PetaBricks: A Language and Compiler
for Algorithmic Choice”. In: ACM PLDI. 2009.

[3] D. Ardagna and R. Mirandola. “Per-flow optimal ser-
vice selection for Web services based processes””. In:
Journal of Systems and Software 83.8 (2010), pp. 1512
–1523.

[4] K. J. Astrom and B. Wittenmark. Adaptive Control.
2nd. 1994. isbn: 0201558661.

[5] S. Babu. “Towards automatic optimization of MapRe-
duce programs”. In: SoCC. 2010, pp. 137–142. isbn:
978-1-4503-0036-0.

[6] W. Baek and T. Chilimbi. “Green: A Framework
for Supporting Energy-Conscious Programming using
Controlled Approximation”. In: ACM PLDI. 2010.

[7] N. Ben Mabrouk et al. “QoS-Aware Service Composi-
tion in Dynamic Service Oriented Environments”. In:
Middleware. Vol. 5896. Lecture Notes in Computer Sci-
ence. 2009, pp. 123–142.

[8] S. Billings. “Identification of nonlinear systems: a sur-
vey”. In: CTA 127.6 (1980), pp. 272–285.

[9] R. Bitirgen et al. “Coordinated management of mul-
tiple interacting resources in chip multiprocessors:
A machine learning approach”. In: MICRO. 2008,
pp. 318–329.

[10] Y. Brun et al. “Engineering Self-Adaptive Systems
through Feedback Loops”. In: Software Engineering
for Self-Adaptive Systems. 2009, pp. 48–70.

[11] R. Calinescu et al. “Self-adaptive software needs quan-
titative verification at runtime”. In: Commun. ACM
55.9 (Sept. 2012), pp. 69–77.

[12] G. Canfora et al. “An approach for QoS-aware ser-
vice composition based on genetic algorithms”. In:
GECCO. 2005, pp. 1069–1075.

[13] C. Cascaval et al.“Performance and environment mon-
itoring for continuous program optimization”. In: IBM
J. Res. Dev. 50.2/3 (2006), pp. 239–248.

[14] B. Cheng et al. “Software Engineering for Self-
Adaptive Systems: A Research Roadmap”. In: Soft-
ware Engineering for Self-Adaptive Systems. 2009,
pp. 1–26.

[15] J. Dean and S. Ghemawat. “MapReduce: simplified
data processing on large clusters”. In: Commun. ACM
51.1 (Jan. 2008), pp. 107–113.

[16] Y. Diao et al. “Self-managing systems: a control theory
foundation”. In: ECBS Workshop. 2005, pp. 441–448.

[17] R. Dorf and R. Bishop. Modern control systems. Pren-
tice Hall, 2008. isbn: 0132270285.

[18] Y. Dotsenko et al. “Auto-tuning of fast fourier trans-
form on graphics processors”. In: PPoPP. 2011,
pp. 257–266.

[19] X. Dutreilh et al. “From Data Center Resource Allo-
cation to Control Theory and Back”. In: CLOUD 0
(2010), pp. 410–417.

[20] L. Eeckhout et al. “Quantifying the Impact of Input
Data Sets on Program Behavior and its Applications”.
In: J. Instruction-Level Parallelism 5 (2003).

[21] G. Evensen. Data assimilation: the ensemble Kalman
filter. Springer, 2009.

[22] A. Filieri et al. “Run-time efficient probabilistic model
checking”. In: ICSE. ACM, 2011, pp. 341–350.

[23] A. Filieri et al. “Self-adaptive software meets control
theory: A preliminary approach supporting reliability
requirements”. In: ASE. 2011, pp. 283–292.

[24] A. Filieri et al.“Reliability-driven dynamic binding via
feedback control”. In: SEAMS. June 2012.

[25] G. F. Franklin et al. Feedback Control of Dynamic Sys-
tems. 2009.

[26] W. Gentzsch et al. “Self-Adaptable Autonomic Com-
puting Systems: An Industry View”. In: Proceedings
of the 16th International Workshop on Database and
Expert Systems Applications. 2005, pp. 201–205.

[27] J. Hellerstein et al. Feedback Control of Computing
Systems. 2004.

[28] J. L. Hellerstein. “Self-Managing Systems: A Control
Theory Foundation”. In: ECBS (2005), pp. 708–708.

[29] J. L. Hellerstein et al. “Applying control theory in the
real world: experience with building a controller for
the .NET thread pool”. In: SIGMETRICS Perform.
Eval. Rev. 37.3 (2010), pp. 38–42.

[30] H. Herodotou and S. Babu. “Profiling, What-if Analy-
sis, and Cost-based Optimization of MapReduce Pro-
grams”. In: PVLDB 4.11 (2011), pp. 1111–1122.

[31] H. Hoffmann et al. “Self-aware computing in the
Angstrom processor”. In: DAC. 2012.

[32] H. Hoffmann. “Racing and Pacing: An Evaluation of
Heuristics for Energy-aware Resource Allocation”. In:
Hot Power. 2013.

[33] H. Hoffmann et al. “Dynamic Knobs for Responsive
Power-Aware Computing”. In: ASPLOS. 2011.

[34] H. Hoffmann et al. “A Generalized Software Frame-
work for Accurate and Efficient Management of Per-
formance Goals”. In: EMSOFT. 2013.

[35] M. C. Huebscher and J. A. McCann.“A survey of auto-
nomic computing: degrees, models, and applications”.
In: ACM Comput. Surv. 40.3 (Aug. 2008), 7:1–7:28.

[36] IBM Inc. IBM Autonomic Computing website. http:
//www.research.ibm.com/autonomic/. 2009.

[37] Intel Inc. Reliability, Availability, and Serviceability
for the Always-on Enterprise. www . intel . com /

assets/pdf/whitepaper/ras.pdf. 2005.

[38] E. Ipek et al. “Core fusion: accommodating software
diversity in chip multiprocessors”. In: SIGARCH Com-
put. Archit. News 35.2 (2007), pp. 186–197.

[39] M. Jaeger et al. “QoS-Aware Composition of Web Ser-
vices: An Evaluation of Selection Algorithms”. In: On
the Move to Meaningful Internet Systems. Vol. 3760.
2005, pp. 646–661.

http://www.research.ibm.com/autonomic/
http://www.research.ibm.com/autonomic/
www.intel.com/assets/pdf/whitepaper/ras.pdf
www.intel.com/assets/pdf/whitepaper/ras.pdf

[40] R. Johnson et al. Professional Java Development with
the Spring Framework. 2005.

[41] T. Kajiyama et al. “Statistical performance tuning of
parallel Monte Carlo ocean color simulations”. In: PD-
CAT. Dec. 2012, pp. 761–766.

[42] C. Karamanolis et al. “Designing controllable com-
puter systems”. In: HotOS. 2005, pp. 9–15.

[43] T. Karcher and V. Pankratius. “Run-time automatic
performance tuning for multicore applications”. In:
EUROPAR. 2011, pp. 3–14.

[44] J. O. Kephart and D. M. Chess. “The Vision of Au-
tonomic Computing”. In: Computer 36.1 (Jan. 2003),
pp. 41–50.

[45] M. Kihl et al. “Control-Theoretic Analysis of Admis-
sion Control Mechanisms for Web Server Systems”. In:
The World Wide Web Journal 11 (2007), pp. 93–116.

[46] J. Kramer and J. Magee. “Self-Managed Systems: an
Architectural Challenge”. In: FOSE. 2007, pp. 259 –
268.

[47] O. Krieger et al. “K42: Building a Complete Operating
System”. In: EuroSys. 2006.

[48] R. Kumar et al. “Processor Power Reduction Via
Single-ISA Heterogeneous Multi-Core Architectures”.
In: Computer Architecture Letters 2.1 (2003), p. 2.

[49] D. Kusic and N. Kandasamy. “Risk-aware limited
lookahead control for dynamic resource provisioning in
enterprise computing systems”. In: Cluster Computing
10 (4 2007), pp. 395–408.

[50] J. Liu et al. “Panacea: towards holistic optimization of
MapReduce applications”. In: CGO. 2012, pp. 33–43.

[51] C. Lu et al. “Feedback Control Architecture and De-
sign Methodology for Service Delay Guarantees in
Web Servers”. In: Parallel and Distributed Systems,
IEEE Transactions on 17.9 (2006), pp. 1014–1027.

[52] M. Maggio et al. “Power Optimization in Embedded
Systems via Feedback Control of Resource Allocation”.
In: Control Systems Technology, IEEE Transactions
on 21.1 (2013), pp. 239–246. issn: 1063-6536. doi: 10.
1109/TCST.2011.2177499.

[53] M. Maggio and H. Hoffmann.“ARPE: A Tool To Build
Equation Models of Computing Systems”. In: Feedback
Computing 2013. 2013.

[54] M. Maggio et al. “Controlling software applications via
resource allocation within the heartbeats framework”.
In: CDC. 2010, pp. 3736–3741.

[55] S. Oberthür et al. “Dynamic online reconfiguration for
customizable and self-optimizing operating systems”.
In: EMSOFT. 2005, pp. 335–338.

[56] Oracle Corp. Automatic Workload Reposi-
tory (AWR) in Oracle Database 10g. http :

/ / www . oracle - base . com / articles / 10g /

AutomaticWorkloadRepository10g.php.

[57] T. Patikirikorala et al. “A systematic survey on the
design of self-adaptive software systems using control
engineering approaches”. In: SEAMS. 2012, pp. 33–42.

[58] S. F. Rahman et al. “Automated empirical tuning of
scientific codes for performance and power consump-
tion”. In: HiPEAC. 2011, pp. 107–116.

[59] N. Rizvandi et al. “On Using Pattern Matching Algo-
rithms in MapReduce Applications”. In: ISPA. 2011,
pp. 75–80.

[60] N. B. Rizvandi et al. “On Modelling and Prediction
of Total CPU Usage for Applications in MapReduce
Environments”. In: ICA3PP. 2012, pp. 414–427.

[61] M. Salehie and L. Tahvildari. “Self-adaptive software:
Landscape and research challenges”. In: ACM Trans.
Auton. Adapt. Syst. 4.2 (2009), pp. 1–42.

[62] J. Sorber et al. “Eon: a language and runtime system
for perpetual systems”. In: SenSys. 2007, pp. 161–174.

[63] M. A. Suleman et al. “Accelerating critical section ex-
ecution with asymmetric multi-core architectures”. In:
ASPLOS. 2009, pp. 253–264.

[64] Q. Sun et al. “LPV Model and Its Application in Web
Server Performance Control”. In: CSSE. Vol. 3. 2008,
pp. 486–489.

[65] M. Tanelli et al. “LPV model identification for Power
Management of Web service Systems”. In: MSC. 2008,
pp. 1171–1176.

[66] N. Thomas et al. “A framework for adaptive algorithm
selection in STAPL”. In: PPoPP. 2005, pp. 277–288.

[67] A. Tiwari et al. “Auto-tuning for energy usage in sci-
entific applications”. In: Euro-Par. 2012, pp. 178–187.

[68] Z. Wang et al. “Image quality assessment: from error
visibility to structural similarity”. In: IEEE Transac-
tions on Image Processing 13.4 (2004), pp. 600–612.

[69] G. Welch and G. Bishop. An introduction to the
Kalman filter. 1995.

[70] T. Yu et al. “Efficient algorithms for Web services se-
lection with end-to-end QoS constraints”. In: ACM
Transactions on the Web 1 (1 2007).

[71] L. Zeng et al. “QoS-aware middleware for Web services
composition”. In: IEEE Transactions on Software En-
gineering 30.5 (2004), pp. 311–327.

[72] X. Zhu et al. “What does control theory bring to sys-
tems research?” In: SIGOPS Oper. Syst. Rev. 43 (1
2009), pp. 62–69.

http://dx.doi.org/10.1109/TCST.2011.2177499
http://dx.doi.org/10.1109/TCST.2011.2177499
http://www.oracle-base.com/articles/10g/AutomaticWorkloadRepository10g.php
http://www.oracle-base.com/articles/10g/AutomaticWorkloadRepository10g.php
http://www.oracle-base.com/articles/10g/AutomaticWorkloadRepository10g.php

	Introduction
	Controlling Software
	Control Methodology
	Model Building Phase
	Controller Synthesis Phase
	Online Model Updates
	Implicit Model Update
	Explicit Incremental Update
	Model Rebuilding

	Formal Assessment

	Experimental Evaluation
	Video Compression
	Energy Control
	Service Dynamic Binding

	Related work
	Conclusion and future work
	References

