
Noname manuscript No.
(will be inserted by the editor)

Testing Operational Transformations in Model-Driven
Engineering

Andrea Ciancone · Antonio Filieri · Raffaela Mirandola .

Received: date / Accepted: date

Abstract Model-driven development is gaining impor-

tance in software engineering practice. This increas-

ing usage asks for a new generation of testing tools to

verify correctness and suitability of model transforma-

tions. This paper presents a novel approach to unit test-

ing QVT Operational (QVTO) transformations, which

overcomes limitations of currently available tools. Our

proposal, called MANTra (Model trANsformation Test-

ing), allows software developers to design test cases

directly within the QVTO language and verify them

without moving from the transformation environment.

MANTra is also available as an Eclipse feature that can

be easily integrated into established development prac-

tice.

1 Introduction

In the last years, Model Driven Engineering (MDE) is

emerging as a paradigm for the design of complex soft-

ware systems, which encourages the realization of new

software systems by the use of a model-centric approach

[10]. Models may be used at different abstraction lev-

els. At the requirements stage, for example, they can

help to identify possible missing parts or conflicts. At

design time, they may be used to analyze the effects

and trade-offs of different architectural choices before

starting an implementation. They may also be used at

run time to support continuous monitoring of compli-

Andrea Ciancone, Antonio Filieri, and Raffaela Mirandola
Politecnico di Milano
Dipartimento di Elettronica e Informazione
P.zza Leonardo da Vinci 32, Milan, Italy
E-mail: andrea.ciancone@mail.polimi.it
E-mail: {filieri,mirandola}@elet.polimi.it

ance of the running system with respect to the desired

model.

The most striking aspect of models in software en-

gineering, as opposed to models in other traditional en-

gineering fields, is that models and final artifacts are

both software. This is why model transformations may

be conceived to support the transition from model to

system. Such transformations may be more or less au-

tomatic, but in any case they may be stated as precisely

defined software manipulation actions, rather than in-

formal design steps.

However, model transformations, as any other pieces

of software, can be inconsistent and produce undesir-

able results in certain conditions. Consequently, it is

useful to check their quality using verification tech-

niques [13]. Models transformation testing is one of the

adopted technique. The model transformation testing

faces all the challenges of the code testing [14]. It is

based on the definition of test cases requiring input

models and an oracle able to identify the correctness

of the output models.

Currently, the black-box testing of model transfor-

mation is the most diffused testing approach. The adop-

tion of black-box testing requires to focus on the suit-

ability of generated test models and to design an oracle

for the output models, while the model transformation

content itself is not inspected (see Section 2 for details).

This approach presents several disadvantages since

it requires to manage complete models whose genera-

tion involves an high human effort. Besides, the size of

the output models has a strong impact on the test case

execution time and on the effort for the oracle defini-

tion. Finally, the definition of the test cases is usually

done with different languages with respect to the ones

used for the specification of model transformations. In

this way, a gap between the model transformation de-



2 Andrea Ciancone et al.

velopment and the model transformation testing is cre-

ated with respect to the required skills and tools.

It is our claim that MDE tools and techniques can

be used also to perform model transformation testing,

allowing both a better exploitation of the potential of

the MDE paradigm itself and a more efficient verifica-

tion process.

To this end we propose in this paper a new testing

approach and tool [5], called MANTra: Model trANs-

formation Testing, able to deal with model transfor-

mation written in QVT Operational (QVTO), which is

a language belonging to the Query/View/Transforma-

tion (QVT) standard [12] created by the Object Man-

agement Group (OMG) in 2008. MANTra allows soft-

ware developers to design test cases directly within the

QVTO language and verify them without moving from

the transformation environment. In this way a white-

box testing becomes feasible and unit testing appears

as a convenient testing approach.

In order to be more easily adopted in current MDE

practice, MANTra is also distributed as an automati-

cally installable feature for the Eclipse IDE [9], which

straightforwardly integrates with the modeling tools pro-

vided by the suite. Nevertheless, the proposed testing

paradigm is applicable with all the transformation en-

gines compliant with the specification of QVTO 2.1 (or

superior) [12].

This paper is organized as follows. Section 2 de-

scribes the genesis of this work within the context of

the European project Q-ImPrESS [7] and reviews re-

lated works. Section 3 presents the MANTra approach

for the QVTO-based transformations testing and then

Section 4 its specific use within the Eclipse IDE. Section

5 shows through a simple working example the prac-

tical aspects of unit testing using the MANTra tool.

In Section 6 more details about the internal behavior

of MANTra are given. Section 7 shortly describes the

validation we have performed within the Q-ImPrESS

project and proposes some best practices to make the

testing process more effective. Finally, section 8 con-

cludes the paper with the description of the limitations

of the proposed approach and the planned future work.

2 Motivation

The approach presented in this paper stems from our

experience in the European project Q-ImPrESS [7]. Q-

ImPrESS aims at building a framework for service ori-

entation of critical systems. Such a framework is deeply

founded on model transformations, which allow the au-

tomatic filling of the gap between design and analysis

models. Hence model transformations, being in the loop

of critical software development, require strong valida-

tion and verification, to different extents.

Thanks to the adoption of QVTO, we have been

able to exploit syntax check and completion feature of

the Eclipse Modeling Framework (EMF) [1]. Then we

faced three different problems:

1. Input domain coverage;

2. Transformation verification;

3. Mathematical validation of analysis results.

Point 1 was faced by developing an ad-hoc generator

of input instances that can be guided by the user. In

particular, industrial partners in the Q-ImPrESS con-

sortium defined the typologies of input models they re-

garded as most critical or significant. This practice, as

well as random coverage of the meta-model, is guiding

the ongoing testing of the framework.

Point 3’s success was somehow settled on transfor-

mation correctness, even though it provides no guaran-

tees about the absence of pathological input cases for

the transformation itself.

What was really missing is point 2. QVT, indeed,

is a quite recent standard and it lacks practices and

success stories both in programming and testing the

transformations. Before defining our test strategy, we

explored a number of more or less mature verification

approaches and tools to figure out a proper testing

plan for our needs. In the remainder of this section,

we shortly summarize the works related to this topic

and outline the main limitations of the philosophy un-

derlying these methods.

2.1 Related Work

Fleurey et al. [8] proposed a methodology to automat-

ically generate input test cases for a transformation

by looking at its code. Generation is mainly driven

by elements’ domain boundaries and meta-model con-

straints. The proposed methodology is implemented for

the Tefkat framework [19].

More recently on the same line, Sen et al. [18] pre-

sented Cartier, a tool for the automatic test-case gen-

eration in MDE. Cartier combines knowledge coming

from different sources (meta-models, meta-model con-

straints, and transformation pre-conditions) in a com-

mon model. It adds a set of constraints that produced

test cases must satisfy. It also exploits Alloy [6] to pro-

duce instance models compliant with specifications and

constraints.

Lin et al. [14] focus on models comparison as a

means for transformation testing. They discuss which

properties have to be compared, how to represent mod-

els at different level of abstraction, which are the most



Testing Operational Transformations in Model-Driven Engineering 3

effective comparison algorithms and how to explicitly

represent model differences. Then they propose a frame-

work [15] that allows the testing of generic model trans-

formations providing a transformation executor and a

comparator for produced and expected models.

Mcgill et al. define Jemtte [17], a product minded to

be an extension of the JUnit testing framework includ-

ing model transformation. It facilitates the definition of

simple Java test cases for models represented in XML

by exploiting assertions over XPath expressions. Each

assertion is able to check the presence of a certain el-

ement, to compare a returned value with the expected

one and to determine the equivalence between sets of

elements.

2.2 Black-box Testing in MDE

To the best of our knowledge, most of the sketched ap-

proaches try to obtain a wide applicability by consid-

ering transformations as black-boxes. Such a strategy

was useful in past years because of the absence of a

standard for model transformation. Instead of produc-

ing approaches tailored on one or another transforma-

tion language and engine, most of the testing frame-

work opted to blindly considering only input and out-

put models.

In this way they introduced some intrinsic limita-

tions:

– They have to manage large input and output mod-

els. This derives from the need to test the entire

transformation as a whole. For large meta-models

and complex transformation this operation could

be expensive in terms of both test design and ex-

ecution time. Large model definition is also a typ-

ical error-prone procedure when conducted manu-

ally, even though it can be supported to a limited

extent by automatic tools [2].

– They might require the adoption of special purpose

languages, requiring a transformation developer to

spend time in acquiring those skills.

– They typically require ad-hoc environments to ex-

ecute tests. This increases the configuration effort

and could lead to costs and portability issues be-

cause the testing process does not depend on model

transformation only but also on other external re-

sources. These resource are not required by the model

transformation but are required by the testing pro-

cess. This dependency could require configuration

effort, lead to costs, and limit the portability to

other OSs or software.

Other more general limitations come from the ora-

cle definition step and from the execution context pro-

filing. The oracle issue [2] is a hard and wide prob-

lem in the field of testing. In the subfield of testing

model transformations, the most common approach is

to establish models comparison methodologies or to de-

fine assertion-based oracles. While model comparison,

in general, is still an open issue, assertion testing is

already quite effective. This is due to many different

reasons, such as the better adaptability of assertions to

describe complex patterns (instead of simple values).

Context profiling is another general issue in testing.

It is always hard to figure out how the execution context

(related models, needed utilities, representations, and

so on) will really look like. Unfortunately, automatic

tools cannot provide useful insights or nice solutions to

this issue.

Concluding, black-box testing in general has to cope

with the above outlined challenges. Each of the tools on

the market provides its own way to overcome certain

limitations, usually introducing some other drawback.

With respect to existing works, the MANTra approach

pays the cost of being focused on QVTO transforma-

tions, but benefits from the availability of “white-box

insights” in order to be able to:

a. exploit model transformation code to improve test-

ing effectiveness,

b. execute and test parts of the transformation in iso-

lation, reducing testing’s complexity,

c. remove dependencies of tests on external tool and

resource (even input files).

3 The Approach

The main focus of this paper is on the unit testing

of QVTO scripts. The need for unit testing in the Q-

ImPrESS project stems from both technical and organi-

zation reasons. First of all Q-ImPrESS transformations

are often complex and it would be hard and unproduc-

tive to test them as a whole. Then, within the project,

our aim is to support a test-as-it-goes paradigm, in or-

der to make easier both to define test cases and to

provide intermediate results to our partners and co-

developers. Finally, we aspire to have a test suite in-

dependent from any specific engine and IDE, such that

anyone can run his tests everywhere he can run its own

QVTO transformations. This goal comes from the fact

that different development teams work in different de-

velopment environments, some of which are proprietary.

Our idea is to define a methodology to test QVTO

transformations using only QVTO itself. Hence we need

to define a way to design input models, define ora-



4 Andrea Ciancone et al.

Fig. 1 Testing report meta-model defined in ecore diagram
representation

cles, invoke transformations and inspect test results, all

within QVTO.

By exploiting QVTO expressiveness, the definition

of the input models is not an hard issue, as it will be

shown later in Section 5. Our oracle is based on as-

sertion checking on the output models. Assertions have

to be defined for each test exploiting QVTO capabili-

ties, enhanced by an ad-hoc defined small library that

makes the assertion mechanism more usable. To invoke

transformations under test from inside the test script

we exploited the reuse by composition and by extension

features of QVTO [12]. The last ones allow also over-

riding original mapping operations to perform specific

experiments, such as what-if analysis of possible alter-

native improvements of the operation without modify-

ing the original code.

Reuse features allow the unit testing in isolation of

small portion of the transformation script. Each test

case defines a partial input model composed by a few

elements, and then applies a partial transformation on

it. Finally, the transformation outcome, which contains

the output model elements, is inspected using asser-

tions.

Testing reports are provided in two ways. The basic

one makes use of QVTO’s logging features and provides

textual outputs easy to be captured on the fly by a mon-

itor process. The second one is instead more structured

and provides a report model that can be easily used

to produce human-readable reports or models in any

useful form for further automatic evaluation of the test

outcomes. The Test meta-model is shown in Figure 1.

Every test is reported with an exit status, among suc-

cess, transformation failure or test failure, and a set of

assertions, as defined by the user, each with a success

or failed evaluation.

Summarizing, MANTra is a white-box QVTO unit

testing tool that allows writing fine-grained test cases

in QVTO for QVTO. Its main strengths are:

1. Neither extra skills nor extra tools are required for

a QVTO developer to test his own products. This re-

duces both training time and tools expenses. MANTra

does not need any other external software than de-

veloper’s preferred QVTO IDE.

2. Reduced context reproduction burden, because a

developer is able to test the real transformation in

its real running environment, but focusing on veri-

fication of only some of its parts per time.

3. MANTra test cases can be reproduced on every QVTO-

compliant engine due to the fact that the defini-

tion methodology is fully compliant with the official

QVTO standard [12]. The test cases are completely

self-contained and it is not necessary to provide in-

put models files of any format.

4. Test case complexity is completely up to the devel-

oper, which is no longer forced to build complete,

often large, input models to test even a single map-

ping operation. He can focus on small partial input

models in order to test specific parts of the trans-

formation.

5. MANTra can take the most important aspects of

any QVTO IDE, like syntax check and completion,

in order to make the developer more comfortable in

writing his test cases, but also to reduce the possi-

bility of coding errors typical of hybrid approaches

like OCL assertions embedded in Java code.

6. MANTra is designed to make unit testing of QVTO

easier and faster, and it can be adopted in test-

driven development processes of QVTO transforma-

tions.

4 Integration with the Eclipse IDE

Besides the manual inclusion of the resources presented

in Section 3, the MANTra testing framework is avail-

able as an Eclipse feature that comes with two plu-

gins embedding the result meta-model as well as the

testing libraries. Such a feature can be installed in a

fully automatic way as an additional component for the

model transformation environment. More specifically,

MANTra is integrable by means of an Eclipse update

site, with the following advantages:

i. Simple one-click installation for Eclipse 3.6+ with

Modeling tools. The additional plugin comes with

automatic satisfaction of dependencies, quickly en-



Testing Operational Transformations in Model-Driven Engineering 5

Fig. 3 Books meta-model defined in ecore diagram represen-
tation

abling any established modeling environment to sup-

port its application.

ii. Required testing resources are accessible from all the

model transformation projects, without the need of

error-prone replications or manual inclusions.

iii. The update site allows for continuous updates that

are automatically reflected in all the transformation

projects.

On the other hand, this is an additional feature only for

Eclipse, while the basic MANTra framework can be ap-

plied on any QVTO engine compliant with specification

OMG 1.0 [12].

Eclipse updatesite panel during MANTra installation is

show in Figure 2. The installation instructions and re-

quirements are detailed in the documentation available

at MANtra site [5].

In the next section the MANTra tool is described,

with the support of a working example, in order to show

how it works in practice.

5 Working Example

In the following, we provide an overview on how the

MANTra tool acts. The use of MANTra requires only

a QVTO engine compliant with specifications in OMG

1.0 [12]. The most general way to use it consists in the

inclusions of the MANTra components (matamodel and

libraries) in the QVTO transformation project. This

suffices for the testing procedure, with no need for en-

vironment changes. In the following we assume that

MANTra’s resources are located in directory qvtoTest-

ing, reachable from the project main folder. At the end

of the section we will show how the workflow can be

eased for the Eclipse IDE.

Let us introduce a simple application case. The goal

is to define a transformation from models of the Books

metamodel to models of the Publications metamodel.

Books metamodel, which is shown in Figure 3, is

composed by three elements. A Book element has a

Fig. 4 Publications meta-model defined in ecore diagram
representation

title attribute, a set of Chapter and a set of Author

elements, both of them can be empty. A Chapter has

a title attribute, and a nbPages attribute representing

its number of pages. Finally, an Author has name and

email attributes.

Publication meta-model’s (described in Figure 4) in-

stances are more general and simpler then Book’s ones.

Each of them describes a publication by means of a sin-

gle element called Publication. It has three attributes:

title, nbPages, representing the number of pages, and

creators, representing the set of its authors.

The mapping from Books meta-model to Publica-

tions meta-model is informally defined by the following

rules r1 through r4 :

r1 A Book element is mapped onto a Publication ele-

ment.

r2 A Publication’s title is obtained from the title of the

correspondent Book.

r3 A Publication’s creators is obtained from the com-

position of authors’s name and email attributes of

the corresponding Book.

r4 A Publication’s nbPages is obtained from the sum of

the chapters’s nbPages of the corresponding Book.

A zero value for nbPages can occur in two cases: the

Book does not have chapters or every Book Chapter

does not have nbPages attribute.

A QVTO script that performs the described model

transformation is described below.

modeltype BOOK uses ’file://book.ecore’;

modeltype PUB uses ’file://pub.ecore’;

transformation Book2Publication

(in book:BOOK, out pub:PUB);

main() {

book.objects()[Book]

->map toPublication();

}

mapping Book::toPublication () :

Publication {

title := self.title;

creators := self.authors->toCreator();

nbPages := 0;

if(self.chapters



6 Andrea Ciancone et al.

Fig. 2 Eclipse updatesite panel showing the MANTra framework feature during installation

->forAll(nbPages > 0)) then {

nbPages :=

self.chapters.nbPages->sum();

}endif;

}

query Author::toCreator() : String {

return self.name +’<’+ self.email +’>’;

}

Testing cases import Test library and the model

transformation to be tested. Then, the involved meta-

models, the test case signature and the real testing code

are defined.

The first example test checks that the query Au-

thor::toCreator() effectively returns the expected cre-

ator string from a Author element.

import qvtoTesting.Test;

import Book2Publication;

modeltype BOOK uses ’file://book.ecore’;

modeltype PUB uses ’file://pub.ecore’;

transformation B2P_author_test()

extends Test, Book2Publication;

main() {

var creator := object Author {

name := ’name surname’;

email := ’email@domain.tld’;

}.toCreator();

assertEquals(’creator id’,

’name surname <email@domain.tld>’,

creator);

}

The test signature declares the test case as a trans-

formation extending Test and Book2Publication (which

is the model transformation under test). Test provides

some basic functionalities needed for the testing. Ex-

tending Book2Publication makes the test case aware of

all the contents of the transformation.

Test’s body builds up an Author element to be passed

to Author::toCreator(). The outcoming value is com-

pared with the expected string by means of the assertE-

quals() function, provided by Test library as part of a

large set of assertion constructs (e.g. assertTrue() ).

The second example test case checks the Book::toPublication

mapping function.

import qvtoTesting.Test;

import Book2Publication;

modeltype BOOK uses ’file://book.ecore’;

modeltype PUB uses ’file://pub.ecore’;

transformation B2P_book_test()

extends Test, Book2Publication;

main() {

var pub := object Book {

title := ’bookTitle’;

chapters += object Chapter {

nbPages := 12 };

chapters += object Chapter {

nbPages := 30 };

authors += object Author {};

}.map toPublication();

assertEquals(’pub name’,

’bookTitle’, pub.title);

assertEquals(’pub nbPage’,

42, pub.nbPages);

assertEquals(’pub creator’,

Bag{’stub’}, pub.creators);

}

-- stub function

query Author::toCreator() : String {



Testing Operational Transformations in Model-Driven Engineering 7

return ’stub’;

}

The structure is essentially the same as in the first ex-

ample, except for two points. A Book element is passed

to a mapping function rather than a query, and a stub

query function is defined in order to isolate the function

to test. The procedure can be generalized introducing

as many stubs for helper or mapping operations as de-

sired.

The third example tests three boundary values for

the mapping of the nbPages attribute.

import qvtoTesting.Test;

import Book2Publication;

modeltype BOOK uses ’file://book.ecore’;

modeltype PUB uses ’file://pub.ecore’;

transformation B2P_bookNbPagesErr_test()

extends Test, Book2Publication;

main() {

assertEquals(’no chapters’,

0, object Book {

}.map toPublication().nbPages);

assertEquals(’emtpy chapters’,

0, object Book {

chapters += object Chapter {};

chapters += object Chapter {};

}.map toPublication().nbPages);

assertEquals(’an empty chapter’,

0, object Book {

chapters += object Chapter {};

chapters += object Chapter {

nbPages := 1

};

}.map toPublication().nbPages);

}

This example shows how to test several input cases in a

single test case. In general, test scripts can be as flexible

as any transformation under testing, by exploiting the

whole QVTO language expressiveness.

Test execution is done via the tests suite library,

that can be accessed by importing TestsSuite.

The following code allows the execution of the three

tests previously described.

import qvtoTesting.TestsSuite;

modeltype testReport

uses ’http://QvtoTests/1.0’;

import B2P_book_test;

import B2P_author_test;

import B2P_bookNbPagesErr_test;

Fig. 5 Testing report model of the example

transformation

B2P_tests(out report: testReport);

main() {

addTest(new B2P_book_test());

addTest(new B2P_author_test());

addTest(new B2P_bookNbPagesErr_test());

runTests();

}

The signature of the previous listing declares to pro-

vide an output model. This last contains the report of

the test suite run. Test cases can be added to the test

suite by means of the addTest() function. Then, the

runTests() function launches test cases one-by-one.

Test cases are executed in isolation to avoid unde-

sired interferences such as test suite execution inter-

ruption whenever a test case generate an exception.

MANTra assertion prints messages on the standard out-

put. Thus, during the execution of a test suite the de-

veloper can see status update messages on the console



8 Andrea Ciancone et al.

as soon as they get available. As an example, running

the test suite presented in this section it comes out the

following console output:

Start tests...

* run test B2P_book_test() @4963ea

* run test B2P_author_test() @174f876

assertEquals[FAILED] creator id

Expected: name surname <email@domain.tld>

Obtained: name surname<email@domain.tld>

* run test B2P_bookNbPagesErr_test() @52f00

End tests.

When everything goes right, a notification message in-

forms that the test has been executed. In case an error

occurs, the system provides detailed information on it.

In the example, the error message explains that the as-

sertEquals with message ”creator id” has failed because

expected and obtained values are not equal.

The output of test execution is an instance of the

result meta-model (Figure 1). The output model of the

test described in this section is shown in Figure 5. Be-

sides the structured result model, as already said, MANTra

provides also a textual output, which can be used di-

rectly by developers for a quick look at testing results.

This output can also be nested in an higher level tool to

provide structured report, to support automatic testing

tools or to just get stored in the company’s knowledge

base.

Eclipse. The integration with the Eclipse IDE, achieved

through the update site installation, provides a sim-

plified way to use MANTra. First of all the scope of

its metamodel and libraries is automatically extended

to all QVTO projects with no need of further inclu-

sions. The second main advantage of Eclipse integra-

tion comes from its embedded continuous update mech-

anism, which ensures the availability of the last version

of MANTra as soon as it is released.

Test code keeps the same shape as shown before

but for a slight variation to the import statements as

follows:

import transforms.Test;

import transforms.TestsSuite;

6 MANTra Internals

In this section deeper notions concerning MANTra’s in-

ternal behavior are provided. Namely, in the first para-

graph we will show how the proposed tool can exploit

the two phases of the QVTO transformation process

[12] to make more expressive tests. In the second para-

graph we present the assertion API provided by MANTra.

2-Phase Testing. As a reader with some experience in

QVTO transformations has probably noticed, the ap-

proach so far presented does not work properly in case

the late operator is used. The definition of test cases

entirely verifiable in the first phase of a QVTO process

(as those in Section 5) is recommended whenever possi-

ble because it makes tests more compact and readable.

Such a kind of tests can be referred to as single step.

Nonetheless, single step tests are not expressive enough

to cover all the possible situations. For example let us

assume to add to both the metamodels the attribute

citedBy, which is a self-relation 1 to many toward ele-

ments of the same type, i.e., each book is cited by other

books, and each publication is cited by other publica-

tions. An extension of the mapping toPublication for

such an attribute is the following:

mapping Book::toPublication () :

Publication {

title := self.title;

creators := self.authors->toCreator();

\textbf{citedBy := self.citedBy.late resolve();}

nbPages := 0;

if(self.chapters

->forAll(nbPages > 0)) then {

nbPages :=

self.chapters.nbPages->sum();

}endif;

}

In such a case there is no way to define a single step

test that is complete for the mapping toPublication, be-

cause the binding of the Publication::citedBy collection

element will be available only at the second stage of

the transformation, because during the first phase, the

transformation is performed and all the statements are

executed except for the assignments that involve late

resolution [12]. Only in the second phase, the transfor-

mation is finalized by performing all the late resolution

assignments.

To deal with late resolution, MANTra provides the

possibility to define testing statements to be executed

within the scope of the first or the second phase only.

An example of such a feature is shown in the following

listing:

import qvtoTesting.Test;

import Book2Publication;

modeltype BOOK uses ’file://book.ecore’;

modeltype PUB uses ’file://pub.ecore’;

transformation B2P_citation_test()

extends Test, Book2Publication;

property citedPubs: Bag(Publication) = Bag{};



Testing Operational Transformations in Model-Driven Engineering 9

property citingPub: Publication = null;

main() {

if(isFirstStep()) then {

var a := object Book {};

var b := object Book {};

citingPub := object Book {

citedBy := Bag{a, b};

}.toPublication();

citedPubs += a.toPublication();

citedPubs += b.toPublication();

}else {

assertEquals(’cited by’,

citedPubs,

citingPub.citedBy->asBag());

}endif;

}

The developer can postpone the assertion check after

the first phase by means of check of the boolean func-

tion isFirstStep. The execution of the second phase of

the transformation workflow is notified by a message on

the console, as illustrated below:

Start tests...

* run test B2P_author_test() @174f876

* second step B2P_author_test() @174f876

End tests.

The ability to test both steps of the QVTO workflow

makes MANTra able to perform a thorough test of all

the QVTO constructs.

Assertions. As already said, MANTra tests are assertion-

based. When an assertion fails, the test procedure is

interrupted and the specified assertion message is re-

turned. MANTra library provides an expressive API,

enabling the developer to write short, readable, and

maintainable test cases using a set of convenient as-

sertions. A summary of the API is provided in Table 1.

They can be used in any point of test transformations

that extends Test library.

7 Validation

MANTra is being successfully adopted to test the QVTO

transformations for the reliability prediction tool in Q-

ImPrESS [7]. Its adoption is changing the development

paradigm for those QVTO transformations towards a

Test Driven Development (TDD) approach, change also

motivated by the increasing complexity of the transfor-

mations and the need for dependable code.

In Section 7.1 a short outline of the Q-ImPrESS

project is given, recalling some quantitative measures

Table 1 MANTra assertions API

assertTrue Asserts that a boolean condition is

true.

assertFalse Asserts that a boolean condition is

false.

assertEquals Asserts that two elements are equal.

In case of collections, they have to

contain the same elements.

assertSame Assert that two elements refer to the

same element, i.e. it is an identity

check.

assertNotSame The negation of assertSame.

assertNull Assert that an element is null.

assertNotNull The negation of assertNull.

fail Make the test to fail, providing the

specified message.

of the transformations tested via MANTra. In Section

7.2 we will report the results of the evaluation and in

Section 7.3 we describe the lessons learned during the

application of MANTra and some best practices gen-

erated by the experience acquired during the work in

Q-ImPrESS.

7.1 Q-ImPrESS

Q-ImPrESS is a recently concluded three years project

funded by the EU under the 7th Framework Program.

It designed and implemented a methodology and a de-

velopment framework to bring the service-orientation
paradigm to advanced industrial domains, such as in-

dustrial production control, telecommunication and crit-

ical enterprise applications, by guaranteeing end-to-end

quality of service. The Q-ImPrESS methodology en-

ables software architects to predict the impact of ar-

chitectural design decisions on performance, reliability,

and maintainability of a service-oriented software sys-

tem. An overall high level vision of the Q-ImPrESS tool

landscape and methodology is illustrated in Figure 7.

The development process in Q-ImPrESS strongly adopts

the Model Driven Development paradigm. Goal of the

integrated development environment (the Eclipse-based

Q-ImPrESS IDE) is to assist software engineers during

the development and evolution both in existing as well

as in newly started software development projects.

The central element of the Q-ImPrESS-based devel-

opment process is the Service Architecture Meta-Model

(SAMM) [7]), which is a new abstract design model of a

software system describing the structure of the system

in terms of components, operations, deployment infras-



10 Andrea Ciancone et al.

Fig. 6 Cumulative distribution of assertion length

Q-ImPrESS
SAMM

Performance 
Analysis

Reliability
Analysis

Maintainability 
Analysis

Analysis results Analysis results Analysis results

Trade-offs
Analysis

Reverse Eng. 
Tools

Model 
Editor

Quality 
Annotation

Design Space
Esploration

Alternative
 Architectures

Weighted 
Alternatives

Fig. 7 Q-ImPrESS methodology and tool architecture
overview

tructure and usage profiling. SAMM is a metamodel

defined via the Eclipse Modeling Framework [1].

A SAMM instance is the core of the process and it

provides elements to design the system under develop-

ment. It can be defined manually by the architect or

can be automatically inferred by existing source code

by reverse engineering tools. Details can be found at [7].

Besides the design model, Q-ImPrESS projects comes

with QoS metamodels including information concern-

ing reliability, performance and maintainability of the

system to be, as well as a stochastic characterization of

its behavior.

A SAMM instance and the corresponding QoS an-

notations have to be transformed into analytical models

in order to be processable for non-functional properties

verification by means of convenient tools, e.g. model-

checkers or simulators.

The verification tools applied in Q-ImPrESS are

based on the modeling languages KLAPER [11] and the

Palladio Component Model (PCM) suite [3]. Both of

them are defined by the corresponding EMF metamod-

els. Hence the core of the verification process lays in the

transformation from the design models (SAMM+QoS)

to the analysis models (KLAPER+PCM). KLAPER

models will then be transformed again in Discrete Time

Markov Chain models in order to be analyzed for reli-

ability purposes.

SAMM to PCM and SAMM to KLAPER are the

two largest transformations developed in QVTO, and

are available under the EPL license terms from the

Q-ImPrESS website [7]. Q-ImPrESS also supports au-

tomatically generating architectural alternatives, and

their evaluation with the tool PerOpteryx [16]. As a

results, the architect gets a set of Pareto-optimal alter-

natives among which he can select the one that satisfies

her quality requirements.

The transformation extensively tested via MANTra

is the one from SAMM to KLAPER. It operates on

five input models, and produces one output model. The



Testing Operational Transformations in Model-Driven Engineering 11

transformation script is composed of 65 mapping func-

tions and 17 queries, plus 15 conditional mappings in-

cluding when filters, disjuncts mapping and if state-

ments.

Previously, we developed an automated testing tool

[4] based on JUnit to test SAMM to PCM. Test cases

were written in OCL and the evaluation framework was

implemented in Java. The SAMM to PCM transforma-

tion has the same five input models as the SAMM to

KLAPER one, and a comparable complexity. In par-

ticular the transformation is composed by 76 mapping

functions and 27 queries, plus 32 conditional mappings,

including, even in this case, when filters, disjuncts map-

ping and if statements. In the following we present the

results obtained with MANTra and we compare them

with some other existing tools.

7.2 Evaluation result

MANTra has been effective in testing Q-ImPrESS model

transformations. Our experience did not reveal any un-

bearable limitation for large scale applicability. Even if

the tool is quite easy to use, at the very beginning of

the testing procedure it took some time to figure out

how to identify significant test cases, due to the lack of

established practices in the area.

Besides qualitatively evaluate the MANTra approach

easier to be used when compared with our previous ex-

perience in Q-ImPrESS, we try here to propose a quan-

titative evaluation of its effectiveness. We compared

MANTra with Jemtte [17], whose test cases are written

as a composition of XPath and Java constructs, and our

previous test tool jOMoT (jUnit + OCL Model Testing

framework) [4], developed in Java, integrated in JUnit,

with assertion in OCL.

The evaluation aims at comparing testing tools with

respect to (1) complexity of assertions and (2) test ex-

ecution performance. The first metric is used as an in-

dex of how much burden is required to manually write

test cases. We have chosen assertion length to compare

assertion complexity. Effective burden depends heavily

on a number of un-quantifiable parameters such as de-

veloper experience, availability of special purpose con-

structs and so on. Concerning performance, we mea-

sured test execution time.

All tests have been applied in analogous external

conditions: similar transformation complexity, same de-

veloper, same training time for the developer and same

execution environment.

Concerning the complexity of assertion definition,

Figure 6 shows the cumulative distribution of assertion

length for the three tools. 90% of MANTra assertions

Fig. 8 Tests suite execution time

are less than 100 chars long and none of them exceed

140 chars. While XPath places 90% of assertion under

140 chars and OCL up to 200 chars.

The reduced complexity in writing assertion in QVTO

is due to the higher level of abstraction of this language,

explicitly designed to deal with model transformations

and hence equipped with compact and direct constructs

to access transformation’s and models’ elements.

A numerical summary of assertion lengths measure-

ment is provided in Table 2. Data are related to different

real-life projects, that is why the number of assertion

checked is different. Standard deviation can be reduced

adopting a larger set of samples. It could be interest-

ing as future work to identify different benchmark for

model transformation testing in order to automatically

produce large sample sets.

Concerning performance, Figure 8 reports the aver-

age execution time of the entire test suite for MANTra

and jOMoT. We decided to focus the evaluation on jO-

MoT because it has a more similar workflow, if com-

pared with MANTra, than Jemtte, and jOMoT provides

exactly the same features as MANTra. The test suite

is composed, globally, by 100 assertions and each time

value reported is the average over 30 runs. Results are

quite stable, with a low standard deviation. Notice that

MANTra can be executed both from the QVTO IDE

and as a JUnit instance. These two variants are pre-

sented separately and show the efficiency of MANTra



12 Andrea Ciancone et al.

Table 2 Assertions length information

Assertion type Average Standard Deviation N. Assertion

(chars) (chars)

QVTO 53 28 90

XPath 73 33 39

OCL 88 55 120

Table 3 Test Suite Execution time

Test Suite Average Standard Deviation

(sec) (sec)

OCL test suite 14.764 0.809

MANTra (automation test tool) 7.529 0.222

MANTra (development tool) 1.148 0.002

in the two most common testing scenario, i.e. as a sup-

port of TDD directly in the development IDE or in an

automated testing procedure.

The development environment was standard Eclipse

Galileo installation with QVTO 2.0.1 engine, equipped

also with JUnit 3.8.2 which was instead used for the

automated test. The machine on which all the tests

have been run is a 2 GHz Pentium (R) M with 1 Gb

RAM.

The speed of MANTra test suite execution within

automatic testing tool depends by the fact that it is a

single transformation containing all the test cases that

has to be compiled after each change. Eclipse provides a

really fast access to the QVTO engine and an on-going

compilation of the transformation which turn out as an

increased execution speed, as evidenced in the graph.

The jOMoT suite is an extension of JUnit designed for

TDD of QVTO transformations against assertion-based

test cases. Both jOMoT and MANTra in automated

mode were executed using JUnit bundled with Eclipse.

Table 3 reports basic statistics on the performance

data-set. MANTra is faster than jOMoT. Even more, it

performs particularly well inside the development tool,

proving one more time to be an effective support tool

for TDD.

Concluding, MANTra has been proved to be more

effective than competitors in supporting test-cases def-

inition, thanks to its high abstraction, and to perform

very fast, thanks to the availability of always more ef-

ficient QVTO engines.

7.3 Lessons Learned and Best Practices

MANTra was extensively used within the Q-ImPrESS

project. Experience led to the elicitation of some advis-

able coding styles to be applied to make more testable

code. As it can be easily expected, most of the common

practices for software testing keep being valid also for

QVTO, with convenient adaptations. Tough, same pe-

culiar features of QVTO may induce some specific types

of errors. The next three practices have been selected

as the most commonly appeared in our experience and

somehow the most sensitive.

One is better than two. Two phases tests are

expressive and captivating because of their ability to

ensure fine grained control on the execution test cases.

Nevertheless, they are much harder to be read and

maintained because of the increased complexity. As an

example of this bad practice, let use show how the

B2P author test shown in Section 5 would appear if

implemented as a two phase test:

import qvtoTesting.Test;

import Book2Publication;

modeltype BOOK uses ’file://book.ecore’;

modeltype PUB uses ’file://pub.ecore’;

transformation B2P_author_test()

extends Test, Book2Publication;

property creator:String = null;

main() {

if(isFirstStep()) then {

creator := object Author {

name := ’name surname’;

email := ’email@domain.tld’;

}.toCreator();

}else {



Testing Operational Transformations in Model-Driven Engineering 13

assertEquals(’creator id’,

’name surname <email@domain.tld>’,

creator);

}endif;

}

Conclusions come easily to their end.

Transformation parameterization. Analogously

to any other languages, QVTO scripts does not retrieve

all the needed information from source model. Indeed

many aspects of the transformation are tuned by as-

signing specific values to internal variables, thought as

parameters. Common cases of parameterization of the

transformation are, for example, default values of at-

tributes or format templates. non capisco:It is quick

and handy to hard-code parameters directly in a map-

ping function. On the other hand, this makes test defi-

nition and maintenance much more costly because any

further change to the hard-coded parameters has to be

reflected in test assertions. As for other programming

languages, it is a good practice to parametrize both the

transformation and the mapping operations, by making

parameter dependency visible from their interfaces.

QVTO provides an effective feature to parameter-

ize transformations and, possibly, mappings. Such fea-

ture comes from the use of configuration properties [12].

Their use is possible for both transformations and MANTra

testing suites and make the developer aware about all

the dependencies of both of them. Configuration prop-

erties’ values have to be set before launching trans-

formations or tests, hence the developer is necessar-

ily aware of their values, avoiding dangling references

or hard to diagnose behaviors due to some hard-coded

“default” value. Also, QVTO configuration properties
make both transformations and test suites more flexible

and reusable, thus speeding up development process as

well as refactoring.

En excerpt of code showing the use of configuration

properties follows:

configuration property

defaultEntityName : String;

...

query getDefaultEntityName ( ) : String {

var internalDefinition := aName;

return

if(defaultEntityName.oclIsUndefined())

then

...

else

defaultEntityName

endif;

}

The use of configuration properties is made partic-

ularly handy in QVTO IDEs like Eclipse.

“Decoupled inheritance”. In MDE the decou-

pling between model structure and mapping operations,

defined respectively in the metamodels and the trans-

formation scripts, is a feature. Nevertheless, this could

make more probable the arising of the problem of code

replication inside mapping functions. Indeed, especially

in presence of inheritance in the metamodel, assignment

to a target element’s attributes often appear, with the

same purpose, in more than one mapping operations. To

ground this claim, consider for example a variation to

the metamodel Books (Fig. 3) consisting in the addition

of the two elements ScientificBook and Periodic extend-

ing the element Book, and adding each one its specific

attributes. From our experience, a common practice is

to define a mapping for ScientificBook and another for

Periodic, as in the following:

mapping ScientificBook::toPublication () :

Publication {...}

mapping Periodic::toPublication () :

Publication {...}

The problem in the example is that mapping opera-

tions do not reflect the elements’ inheritance defined in

the metamodel. Thus each mapping has to replicate the

assignment of the inherited attributes title, creator and

nbPages. Such organization of the mapping operations

leads also to the duplication of tests. The situation suf-

fers exactly the same problems test duplication does in

every programming language [20]. The coding of QVTO

scripts, especially with Eclipse, is particularly prone to

duplications because the editor does not distinguish be-

tween the attributes properly belonging to an element

and the ones it inherited.

A better mappings’ structure for the previous case

could be the following:

mapping Book::toPublication () :

Publication {--asBefore--}

mapping ScientificBook::toPublication () :

Publication inherits Book::toPublication

{...}

mapping Periodic::toPublication () :

Publication inherits Book::toPublication

{...}

where the sub-mappings ScientificBook and Periodic

manipulate specific attributes only. The derived good



14 Andrea Ciancone et al.

practice that can be recommended is that mapping

structure should reflect as much as possible elements

hierarchies present in the metamodel. In a straightfor-

ward way, tests will comply too and will allow for cor-

rect isolation of tested statements as well as for better

inspection and maintainability of both transformations

and MANTra tests.

8 Conclusions

This paper presented MANTra, a new testing approach

for QVTO-based model transformations. The idea un-

derlying MANTra definition is to exploit the potentiali-

ties of MDE techniques and tools to deal with the com-

plexity of model transformations testing.

To bring this approach to fruition we developed also

a tool using which we analyzed transformations com-

ing from the Q-ImPrESS project. The integration with

the Eclipse IDE is also a quick and effective way to

bring the application of MANTra into industrial con-

texts. The practical aspects of the testing tool have

been presented in Section 5 together with a small exam-

ple, which shows how it is possible to write test cases,

create a test suite and launch tests to verify the model

transformation correctness.

MANTra is designed to make unit testing of QVTO

easier and faster. It exploits QVTO features allowing

the definition of input models. It also requires that the

transformation under test avoids direct access to input

and output model elements, that is, reading an element

value has to be accomplished through QVTO queries.

This is not a limitation at all, but a practice to be kept

in mind during transformation coding.

Nevertheless it still requires a broad usability vali-

dation. We are planning a training and coding session

with several model transformations developers, in or-

der to get a non-biased feedback on how easy to use

and appealing the tool is.

MANTra can be extended along several directions.

We plan to define how QVTO IDEs could be enhanced

to better support MANTra testing development, for ex-

ample, making it able to provide the execution trace

of failed assertions in form of text messages or graphs.

This feature is going to be realized by exploiting QVTO

trace files, in order to keep everything QVTO com-

pliant. Furthermore, we plan to include our approach

within an higher level development tool for automatic

generation of QVTO transformations. By integrating

MANTra in the automatic code generation chain, it

is possible to produce, besides transformations, also

proper unit-test suites. All this by exploiting the same

structure of the established code generator: MANTra

tests are completely defined in QVTO language as well.

Finally, we are also planning to assess the effective-

ness of the proposed approach through a comprehensive

set of experiments in a real testbed and to perform an

extensive study of the test cases development to extend

the definition of “best practices” that are specific for

this testing approach and tool.

Acknowledgements Work partially supported by the Eu-
ropean Union projects Q-ImPrESS (FP7 215013) and SM-
Scom (IDEAS 227077).

References

1. EMF: Eclipse Modeling Framework (2nd Edition).
Addison-Wesley Longman, Amsterdam (2009)

2. Baudry, B., Dinh-Trong, T., Mottu, J., Simmonds, D.,
France, R., Ghosh, S., Fleurey, F., Le Traon, Y.: Model
transformation testing challenges. In: Proceedings of
IMDT workshop in conjunction with ECMDA’06

3. Becker, S., Koziolek, H., Reussner, R.: The palladio
component model for model-driven performance predic-
tion. Journal of Systems and Software 82(1), 3 – 22
(2009). Special Issue: Software Performance - Modeling
and Analysis

4. Ciancone, A.: jomot framework
5. Ciancone, A., Filieri, A.: Mantra website.

http://aciancone.inscatolati.net/prj/MANTra/
6. Community, A.: The alloy analyzer.

http://alloy.mit.edu/
7. Consortium, Q.I.: Project website. http://www.q-

impress.eu
8. Fleurey, F., Steel, J., Baudry, B.: Validation in model-

driven engineering: testing model transformations. In:
First International Workshop on Model Design and Val-
idation, pp. 29–40 (2004)

9. Foundation, T.E.: Project website.
http://www.eclipse.org

10. France, R., Rumpe, B.: Model-driven development of
complex software: A research roadmap. In: Proc. Fu-
ture of Software Engineering FOSE ’07, pp. 37–54 (2007).
DOI 10.1109/FOSE.2007.14

11. Grassi, V., Mirandola, R., Randazzo, E., Sabetta, A.:
Klaper: An intermediate language for model-driven pre-
dictive analysis of performance and reliability. The Com-
mon Component Modeling Example pp. 327–356 (2007)

12. Group, O.M.: Qvt 1.0 specification.
http://www.omg.org/spec/QVT/1.0/

13. Harrold, M.J.: Testing: A roadmap. In: In The Future of
Software Engineering, pp. 61–72. ACM Press (2000)

14. Lin, Y., Zhang, J., Gray, J.: Model comparison: A key
challenge for transformation testing and version control
in model driven software development. In: Control in
Model Driven Software Development. OOPSLA/GPCE:
Best Practices for Model-Driven Software Development,
pp. 219–236. Springer (2004)

15. Lin, Y., Zhang, J., Gray, J.: A testing framework for
model transformations. In: in Model-Driven Software De-
velopment - Research and Practice in Software Engineer-
ing, pp. 219–236. Springer (2005)



Testing Operational Transformations in Model-Driven Engineering 15

16. Martens, A., Koziolek, H., Becker, S., Reussner,
R.: Automatically improve software architecture
models for performance, reliability, and cost us-
ing evolutionary algorithms. In: Proc. 1st Joint
WOSP/SIPEW International Conference on Per-
formance Engineering (WOSP/SIPEW’10), pp.
105–116. ACM, New York, NY, USA (2010). DOI
http://doi.acm.org/10.1145/1712605.1712624

17. Mcgill, M.J., Cheng, B.H.C.: Test-driven development of
a model transformation with jemtte (2007)

18. Sen, S., Baudry, B., Mottu, J.M.: On combining multi-
formalism knowledge to select models for model trans-
formation testing. In: Software Testing, Verification, and
Validation, 1st International Conference on, pp. 328–337
(2008)

19. Wang, J., Kim, S.K., Carrington, D.: Automatic gen-
eration of test models for model transformations. In:
ASWEC ’08: Proceedings of the 19th Australian Confer-
ence on Software Engineering, pp. 432–440. IEEE Com-
puter Society, Washington, DC, USA (2008)

20. Zhang, M., Hall, T., Baddoo, N.: Code bad smells: a re-
view of current knowledge. Journal of Software Mainte-
nance and Evolution: Research and Practice 23(3), 179–
202 (2011)


