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Abstract We extend recent approaches for calculating the probability of pro-
gram behaviors, to allow model counting for complex data structures with nu-
meric fields. We use symbolic execution with lazy initialization to compute the
input structures leading to the occurrence of a target event, while keeping a sym-
bolic representation of the constraints on the numeric data. Off-the-shelf model
counting tools are used to count the solutions for numerical constraints and field
bounds encoding data structure invariants are used to reduce the search space.
The technique is implemented in the Symbolic PathFinder tool and evaluated on
several complex data structures. Results show that the technique is much faster
than an enumeration-based method that uses the Korat tool and also highlight the
benefits of using the field bounds to speed up the analysis.
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1 Introduction

Model counting is the problem of computing the number of solutions (models) that
satisfy a set of constraints. Model counting has found applications in worst case exe-
cution time estimation [27], increasing parallelism [38], quantitative information flow
analysis [34], and many others.

We focus here on another important application, namely Probabilistic Software
Analysis (PSA) [36,15,7,21]. PSA is an emerging technique to quantify the probabil-
ity of reaching program events of interest assuming that program inputs follow given
probabilistic distributions [15]. The input distributions allow data from real world ob-
servations to be incorporated in the analysis of programs that interact with their environ-
ment, as well as to encode uncertainty in design assumptions about the usage profile of
a program, including the interactions with third-party components and systems. PSA is
useful in many domains including debugging, cryptographic protocols, cyber-physical
systems, biology, and reliability analysis [21].

Recent PSA techniques [18,15,16,28] use symbolic execution of the program to
collect symbolic constraints on the inputs that lead to the occurrence of target program
events. The number of satisfying assignments for these constraints are then calculated
using model counting procedures. This gives a measure of how likely it is for an input
distributed according to a given probabilistic distribution to satisfy the constraints.

Most work on probabilistic symbolic execution has focused on integers and used
off-the-shelf model counting tools for computing the number of integer values within
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the volume of a convex polytope, e.g. LattE [2], to compute probabilities [18,15,16,28].
Recent techniques have been introduced to estimate the (approximate) number of so-
lutions for floating point constraints [7]. However these techniques can not directly
be applied to complex data structures, such as lists and trees. Analysis of programs that
manipulate complex data is well studied with many approaches available, see e.g. shape
analysis [40], specification-based testing [9] and constraint solving [24], among others.
However model counting for data structures has not been addressed so far.

In this paper we propose a model counting procedure for a combination of heap
and numeric constraints collected along a symbolic execution of a program. A simple
approach is to enumerate all the possible data structures up to a given size and then
to check their validity against the given constraints. However this becomes quickly
intractable for large solution sets. We instead propose an approach based on symbolic
execution and lazy initialization [25] to generate and thus count data structures that
satisfy mixed heap and numeric constraints; we further use off-the-shelf model counting
procedures [2] for the numeric constraints.

Lazy initialization extends symbolic execution with the ability of handling input
data structures: it constructs the heap as the program paths are explored, and defers con-
cretization of symbolic heap objects as much as possible. It produces symbolic heaps
that are pairwise non-isomorphic while guaranteeing that no relevant states are missed.
It can thus be used as a powerful procedure for generating and counting all the struc-
tures (up to a given bound). We further use relational field bounds [35] to reduce the
search space for the solutions. Intuitively, field bounds restrict the number of choices
that lazy initialization needs to consider when it concretizes a part of the heap.

We have implemented the model counting procedure in the Symbolic PathFinder
tool-set [32] and have evaluated it on several complex data structure subjects from the
literature. The experiments show that our proposed approach scales much better than
an optimized enumeration-based method that uses the Korat tool [9]. The experiments
also show the benefits of relational bounds on the overall cost of model counting.

2 Background

2.1 Symbolic Execution

Symbolic Execution [26,12] is a program analysis technique that executes programs
on unspecified inputs, by using symbolic inputs instead of concrete data. The state of a
symbolically executed program is defined by the (symbolic) values of the program vari-
ables, a path condition (PC), and a program counter. The path condition is a (quantifier-
free) boolean formula over the symbolic inputs; it accumulates constraints on the inputs
to follow that path. The program counter defines the next statement to be executed.

A symbolic execution tree characterizes the execution paths followed during sym-
bolic execution. The tree nodes represent program states and the arcs the transitions
between states due to the execution of program instructions. Typical applications of
symbolic execution include test case generation and error detection, with many tools
available [32,20,37,10]. Symbolic execution of looping programs may result in an infi-
nite symbolic execution tree. For this reason, symbolic execution is typically run with a
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(user-specified) bound on the search depth. Our work on probabilistic software analysis
uses the symbolic execution tool Symbolic PathFinder (SPF) [32].
Lazy Initialization SPF uses lazy initialization [25] to handle dynamic input data struc-
tures (e.g., lists and trees). The components of the program inputs are initialized on an
“as-needed” basis. The intuition is as follows. To symbolically execute method m of
class C, SPF creates a new object o of class C, leaving all its fields uninitialized. When
a reference field f of type T is accessed in m for the first time, SPF non-deterministically
sets f to null, to a new object of type T with uninitialized fields, or to an alias to a
previously initialized object of type T. This enables the systematic exploration of dif-
ferent heap configurations during symbolic execution. Here we will also consider an
optimized form of lazy initialization called Bounded Lazy Initialization (BLISS) [35]
that uses relational bounds and SAT solving to reduce the number of possible structures
to consider. BLISS reduces the time and memory requirements over lazy initialization
and therefore makes the techniques for counting discussed here tractable.

2.2 Probabilistic Software Analysis

We build on our previous work from [18,15,7], that uses symbolic execution for PSA.
The goal of the analysis is: (1) to identify the symbolic constraints characterizing the
inputs that make the execution satisfy a given property, and then (2) to quantify the
probability of satisfying the constraints. For simplicity, we assume the satisfaction of the
target property to be characterized by the occurrence of a target event (e.g. successful
termination or failure), but our work extends to bounded LTL [41] as well.

The analysis works with a limited budget of symbolic paths, obtained with a bounded
symbolic execution of the program. Some of these paths lead to failure and some of
them to success (termination without failure). These path conditions are classified in
two disjoint sets: PCs = {PCs

1,PCs
2, . . . ,PCs

m} and PCf = {PCf
1 ,PCf

2 , . . . ,PCf
p}.

The path conditions may not cover the full input domain due to inherent incomplete-
ness in the analysis, e.g. due to non-terminating loops or non-exhaustive path explo-
ration. These remaining paths are called grey paths and are used in [15] to quantify the
confidence one can put in the bounded symbolic analysis.

Probabilistic Usage Profiles The constraints generated with symbolic execution are
analyzed to quantify the likelihood of an input to satisfy them, where the inputs are
distributed according to given usage profiles [15]. A usage profile is a probabilistic
characterization of the software interactions with the external world, e.g. the users or
the physical execution environment. It assigns to each valid combination of inputs its
probability to occur during execution. Usage profiles can be specified based on physical
phenomena, known sensor parameters or other domain specific knowledge about the
program and its deployment context. They can also be built automatically based on
observed data from past usages of the program [19,5].

In [15], we assumed that all the input variables range over finite discrete domains,
whose joining is generically indicated as D. We relaxed this assumption in more recent
work [7]. We profile the expected usage for the program through a profile UP, which is
a set of pairs 〈ci, pi〉 where ci is a usage scenario defined as a (constraint representing
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a) subset of D and pi (pi ≥ 0) is the probability that a user input belongs to ci. We
further require, for simplicity, {ci} to be a complete partition of D, and thus

∑
i pi = 1.

Intuitively, UP is the distribution over the input space. Notice that ci could contain even
a single element of D, allowing for the finest grained specifications of UP.

Given the output of symbolic execution, the probability of success can be defined
as the probability of executing the program (P ) with an input satisfying any of the
successful path conditions, given the profile UP. This definition can be formalized as
Prs(P ) =

∑
i Pr(PCs

i | UP). An analogous definition is provided for the probability of
failure, Prf (P ). The probability of grey paths is 1−(Prs(P )+Prf (P )) and it quantifies
the ratio of elements of the input domain for which neither success nor failure have been
revealed for the current analysis. This information is a measure of the confidence we
can put on the probability estimation, under the current exploration bound.

Computing Probabilities with Model Counting To compute the probabilities of path
conditions, we use a quantification procedure for the generated constraints. In [15] we
used model counting techniques, i.e. LattE [14], to calculate the exact number of points
of a bounded (possibly very large) discrete domain that satisfy linear constraints. Re-
cently [7], we developed quantification procedures for the analysis of programs that
have mixed integer and floating point constraints of arbitrary complexity.

To compute the probability of a path (described by PC) we use the fact that UP
defines a partition of the input domain and then, from the law of total probability [33]:

Pr(PC | UP) =
∑
i

Pr(PC | ci) · pi

Furthermore, from the definition of conditional probability [33]: Pr(PC | ci) = Pr(PC∧
ci)/Pr(ci).

To use model-counting techniques for the computation of the conditional probabili-
ties, let us define for a constraint c the function ](c) that returns the number of elements
of D satisfying c. ](·) is always a finite non negative integer because we assumed D fi-
nite and countable. Under this same assumption, Pr(c) is, by definition [33], ](c)/](D)
(where ](D) is the size of the non-empty input domain). Thus, one can express the
probability of success as:

Prs(P ) =
∑
i

Pr(PCs
i | UP) =

∑
i

∑
j

Pr(PCs
i | cj) · pj =

∑
i

∑
j

](PCs
i ∧ cj)

](cj)
· pj

3 Approach

We describe here how the probabilistic software analysis is extended to handle programs
that take as input structured data types, e.g. lists or trees.

3.1 Usage Profiles

Usage profiles (UP) for data structures are defined with the help of Java predicates
(i.e., boolean methods) that define data structure properties that partition the input state
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space. To each element of this partition a probability value is assigned, with the sum
of those values being equal to 1. For example, for a program with an input list, the UP
may specify that the input list is non-null 90% of the time (and null 10%). Alternatively,
the UP may specify that the list is acyclic say 95% (and cyclic 5%), or that the list is
“small” (number of nodes less than 10) most of the time (90%) and “large” (number of
nodes greater than 10) rest of the time (10%) etc.

As before, we restrict ourselves to finite input domains, which for data structures
also lead to a limited number of possible heap nodes for the input. It is the responsibility
of the user to ensure that the predicates in the UP define a partition of the input domain
(i.e. a division of the domain as the union of non-overlapping non-empty subdomains).

3.2 Symbolic Constraints

SPF can analyze programs with unbounded data structures as inputs, using lazy initial-
ization [25]. The result of symbolic execution is a set of paths, each characterized by a
path condition that encodes both numeric and heap constraints.

The numeric constraints are generated whenever a branching condition on primitive
(numeric) fields is evaluated. The heap constraints are generated during the lazy initial-
ization of instructions that perform a first access to an uninitialized field (i.e., bytecodes
aload, getfield, and getstatic).

The heap constraints can have the following forms:
– ref = null. Reference ref points to null.
– ref 6= null. Reference ref is non null.
– ref1 = ref2. References ref1 and ref2 are aliased (point to the same object).
– ref1 6= ref2. References ref1 and ref2 are not aliased.

Example Consider the Java code in Listing 1.1 [25] that declares a class Node for a
linked lists. Fields elem and next represent the node’s integer value and a reference
to the next node in the list, respectively. Method swapNode destructively updates its
input list, referenced by the implicit parameter this, according to a numeric condition
on the first two nodes.

Listing 1.1: List example.
1 class Node {
2 int elem;
3 Node next;
4

5 Node swapNode() {
6 if(elem > next.elem) {
7 Node t = next;
8 next = t.next;
9 t.next = this;

10 return t;
11 }
12 return this;
13 }
14 }

Symbolic execution with lazy initialization results in seven symbolic paths (see Fig-
ure 1), due to the if condition and the different aliasing possibilities in the input
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PC1: in.next = null ∧ in 6= null
PC2: in.next = in ∧ in 6= null
PC3: in.next 6= in ∧ in.next 6= null ∧ in 6= null ∧ in.elem ≤ in.next.elem
PC4: in.next.next = null ∧ in.next 6= in ∧ in.next 6= null ∧ in 6= null ∧ in.elem > in.next.elem
PC5: in.next.next = in ∧ in.next 6= in ∧ in.next 6= null ∧ in 6= null ∧ in.elem > in.next.elem
PC6: in.next.next = in.next∧ in.next 6= in∧ in.next 6= null∧ in 6= null∧ in.elem > in.next.elem
PC7: in.next.next 6= in ∧ in.next.next 6= in.next ∧ in.next.next

6= null ∧ in.next 6= in ∧ in.next 6= null ∧ in 6= null ∧ in.elem > in.next.elem

Figure 1: Symbolic paths from method swapNode.
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Figure 2: Lazy Initialization.

These symbolic execution paths together represent all possible actual executions of
swapNode. The PCs represent an isomorphism partition of the input space, e.g., PC7

describes all (cyclic or acyclic) input lists with at least three nodes such that the first
element is greater than the second element. The analysis reports a failure for PC1 –
the method raises an unhandled NullPointerException. There are no grey paths
(since there are no loops).

As an illustration of lazy initialization consider the symbolic execution of next
= t.next; for the symbolic heap configuration depicted in the root of the tree in
Figure 2. In the figure a “blob” indicates field next pointing to it is uninitialized (it
has not been accessed yet by the symbolic execution along this path). “E0” and “E1”
represent some fresh symbolic values for the numeric field elem; a “?” means that
a field of numeric (or other primitive) type has not been initialized yet. Dashed arrows
depict a branching of nondeterministic choices, describing all the possible instantiations
of the symbolic structure. Since t.next is uninitialized, SPF uses “lazy initialization”
to assign it either null, a new symbolic object with uninitialized fields, or an object
created during a previous initialization (resulting for our example in two instances of
circular lists). Intuitively, this means that SPF makes four different assumptions about
the shape of the input list according to different aliasing possibilities and it explores all
of them systematically. The PCs are updated according to these choices. Once t.next
has been initialized the execution proceeds according to the Java semantics.

3.3 Model Counting For Data Structures

Though the counting-based probabilistic analysis method from Section 2 can be applied
on any finite input domain, we need an efficient procedure for counting data structures.
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In the worst case a complete (and expensive) enumeration of all the possible input in-
stances (up to a pre-specified bound) might be performed. A less expensive alternative,
that we proposed in [15] is to use Korat [9] for the data structure enumeration. Korat is
a tool that performs constraint-based generation of structurally complex test inputs for
Java programs. Korat’s goal is to systematically generate all complex test data structures
(within prescribed bounds) for the purpose of testing. Although Korat was not designed
for model counting we can use it to compute all input data structures that satisfy a com-
plex predicate within pre-defined bounds. The predicate is written as a boolean method
often called repOk, whose body can embed any arbitrarily complex computation. The
finitization of the input domain is accomplished by specific Korat methods to specify
bounds on the size of input data structures as well as on the domain of primitive fields.

Thus we can encode the constraints provided by symbolic execution together with
the constraints from the usage profile as a repOK predicate and run Korat to count the
data structures that satisfy the constraints for the given finitization. Experiments with
this approach (see Section 4) show that it often scales poorly when the path constraints
contain a combination of heap and numeric constraints, and the numeric domains are
very large. This is due to the enumeration of the valid values for integer fields performed
by Korat. In the next section we propose an efficient alternative method.

3.4 Model Counting using Lazy Initialization

We propose to use symbolic execution with lazy initialization to efficiently generate
and count the data structures that satisfy given constraints. The core insight is to use
lazy initialization to enumerate the structures, but to keep the constraints on the numeric
fields of the structures symbolic; the valid assignments for these symbolic fields can then
be counted with an off-the-shelf model counting procedure, such as LattE [2]. LattE
implements Barvinok’s algorithm [4], which constructs a generating function suitable
for determining the number of points within a convex polytope without enumeration.

To count the number of solutions to a set of mixed heap and numeric constraints,
we apply symbolic execution with lazy initialization to a boolean method encoding the
constraints (similar to the repOk method in Korat). The model counting procedure
requires thus two inputs:
Method repOk: Java boolean method encoding the constraints; returns true if the

structure satisfies the constraints (e.g. the list is acyclic).
Finitization: Domain bounds for both reference and numeric data (e.g., a list may

have up to 5 nodes, whose elements are between 1 and 10).
For example, if we want to count all the acyclic lists having at most 6 nodes, whose

elements are between 1 and 10, we would use the code reported in Listing 1.2.

Listing 1.2: Counting acyclic lists.
1 class List{
2 Node head;
3 boolean repOkacyclic(){
4 Set<Node> nodes = new HashSet<Node>();
5 Node iterator = head;
6 while(iterator!=null){
7 // check acyclic
8 if(!nodes.add(iterator))
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9 return false;
10 //check bounds
11 if(iterator.elem<1||iterator.elem>10)
12 return false;
13 if(nodes.size>6)
14 return false;
15

16 iterator=iterator.next;
17 }
18 return true;
19 }
20

21 public static void main(String[] args){
22 List L0 = new List();
23 L0=(List) Debug.makeSymbolicRef("L0",L0);
24 if(L0!=null)
25 assert (L0.repOkacyclic());
26 }
27 }

The symbolic execution of the program in Listing 1.2 collects as successful path
conditions (i.e. not leading to an exception) all the symbolic structures representing an
acyclic list with at most 6 nodes, whose elements are integers between 1 and 10.

The main method summarizes the steps required for counting these structures:
1. Create a symbolic instance of the structure. In SPF syntax, see lines 22 and 23.
2. Execute the method repOkacyclic. This step drives the execution toward ex-

ploring all the valid structures, expanding and concretizing all of them, i.e. leaving
only symbolic numeric variables to be analyzed.

3. Preempt the execution from exploring structure outside the valid domain or not sat-
isfying the constraints. For brevity, we just assert the repOkacyclic predicate.
The total number of acyclic lists can thus be obtained applying established model

counting solutions on the success path conditions, which now predicate only on the
numeric fields. The result in this case would be 6,543,210 acyclic lists out of 7,654,321
lists with up to 6 nodes (and elements between 1 and 10).

Note that encoding the repOk is subtle, as it not only encodes the given constraints
but it also includes code to enumerate all the structures up to bounds given in the fini-
tization. Similar to Korat, the structure of the repOk is crucial to the efficiency of the
method. If repOk would first enumerate all structures and only then determine if they
are valid (according to the given constraints) our approach would not benefit from lazy
initialization (but it would still benefit from solving the numeric constraints separately).

In our implementation we provide a code skeleton for enumerating all data struc-
tures (to which users can add their constraints). Input bounds are provided in a con-
figuration file. Internally SPF backtracks when the bounds on heap nodes are reached.
Bounds on numeric fields are fed directly to the constraint solvers.

3.5 Probabilistic Software Analysis

Counting the instances of a data structure satisfying a given predicate enables us to
compute the probability of target program events to occur, given a specific usage profile.

As an example let us compute the probability of failure (in this case, throwing a
NullPointerException) when executing the swapNode method of Listing 1.1.
Assume a usage profile that specifies that the input list is acyclic with probability 0.9



Model Counting for Complex Data Structures 9

and it is cyclic with remaining probability 0.1. There is only one failure symbolic path
(revealed by a null pointer exception in the evaluation of the if condition). The path
condition for the failure path, as revealed by SPF, is

input 6= null ∧ input.next = null

Since this path condition is only satisfiable for acyclic lists, we get the probability
of failure Prf (P ):

0.9 · ](input 6= null ∧ input.next = null ∧ acyclic(input))

](acyclic(input))

The results of model counting are ](input 6= null∧input.next= null∧acyclic(input)) =
10 and ](acyclic(input)) = 1, 111, 111 , for lists with up to 6 nodes and elem ranging
over 1..10, giving probability of failure 8.1 · 10−6.

One can argue that we should simply correct the error in method swapNode (for
example adding a null check). However imagine a scenario where this method is part
of a large code base and that usage (calling context) of the method indicates that the
probability of the list being null is very small. In such cases PSA becomes very useful,
for example, to “rank” the errors according to the likelihood of occurrence, allowing
developers to focus on high probability errors first. More example applications of PSA
will be discussed in Section 4.
Embedded usage profiles. In the computation above we have followed the approach
in [15] and computed the effects of the UP after the path constraints have been col-
lected. An alternative way introduced in [28] consists in embedding the usage profile
as “preconditions” (assume statements) in the code. Listing 1.3 shows an example of
embedded UP for the analysis of the swapNode method. For the usage profile that
states that the input list is acyclic 90% of the time (and cyclic 10%) We use a sym-
bolic variable, up, uniformly distributed in the range 1 ≤ up ≤ 100, for controlling the
distribution of the input values.

Listing 1.3: Embedded UP for the List example.
1 List L0 = new List();
2 L0=(List)Debug.makeSymbolicRef("L0",L0);
3 if(up<=90){
4 Debug.assume(L0!=null && L0.repOkacyclic());
5 }else{
6 Debug.assume(L0!=null && L0.repOkcyclic());
7 }
8 L0.swapNode();

The assume statements are implemented using the built-in Debug.assume()
method from SPF [32]. The failure probability can then be computed using model
counting for the numeric constraints encoded in the path conditions for the failure paths.

Both ways for handling UPs are supported in our tool with analogous performance
overhead, leaving to the developer the choice whether keeping the UP and the code
separated or included in the same file.

3.6 Optimizations

In this section we describe optimizations included in our analysis that allow us to im-
prove scalability.
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BLISS (Bounded Lazy Initialization with Sat Support) [35], is an optimization
specifically tailored to improve the lazy initialization of data structures during sym-
bolic execution. Data structures usually obey strong restrictions on their structure and
stored data, under the form of class invariants. Some typical invariants are “the items
in this list are sorted”, or “if a node is red, then both its children are black" (for red–
black trees). BLISS exploits known class invariants to compute tight bounds on the data
structure fields. Intuitively, a tight field bound is a relational upper bound (set of pairs)
on the (relational) semantics of Java class fields. A tight field bound for a Java field f ,
is a binary relation between unique field identifiers that only relates pairs 〈i1, i2〉 that
are feasible, i.e., for which there exists a structure satisfying both the class invariant
and the canonical labeling of identifiers, that includes in the memory heap objects with
identifiers i1 and i2 such that i1.f = i2.

During lazy initialization, whenever an object o is dereferenced through a (sym-
bolic) object field f , three possibilities have to be considered, namely [25]:

– o.f is initialized as the null value,
– o.f is initialized as a pre existing object o′ in the memory heap, and
– o.f is initialized as a new object o′′.

The tight field bounds allow to reduce the choices in the first and second case (the
latter being the most expensive). BLISS prunes those symbolic executions where the
(partially) symbolic memory heap contains enough information to determine it can not
be extended into a feasible heap. Intuitively, the concrete parts of the partially symbolic
heap are translated as constraints that are conjoined with an automatically generated
propositional description of the class invariant. A satisfiability checker is used to deter-
mine whether the symbolic parts of the heap can be concretized into a fully concrete
memory heap satisfying the class invariant. Those partially symbolic heaps producing
a negative outcome can be safely pruned from the symbolic execution process. BLISS
can improve lazy initialization significantly [35] and occupies a natural place in the
context of this work.

As already mentioned, in this paper we focus on integer constraints, whose models
are counted with Latte [2] (to cope with floating-point numbers and nonlinear con-
straints, it is straightforward to use qCoral [7] in place of Latte). The complexity is in
terms of the number of variables and the number of constraints. For large constraints,
the procedure could be very time consuming. We address this problem by first simpli-
fying the constraints and using a divide-and-conquer approach [15] that divides large
path conditions into independent constraints which can then be solved independently.
Intuitively two constraints are independent if the sets of variables they constrain have
no intersection. The approach facilitates caching and reusing counting results.

4 Implementation and Experience

In this section we report an experimental comparison of an implementation of our ap-
proach with Korat (Section 4.1) and a set of case studies demonstrating its applicability
for probabilistic software analysis (Section 4.2).

We implemented our approach on top of SPF [32] v6. The collection of path con-
ditions followed by the probability computations are implemented by means of JPF
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listeners. Experiments were performed on a workstation with Intel Core i7-2600 pro-
cessor with a 3.40 GHz clock speed and 8 GB DDR3 RAM, running Linux 3.2.0. 6 GB
of heap memory were allocated for the Java virtual machine. All the times are in sec-
onds. TO means the execution has been interrupted after a timeout of 5 hours. OOM
means the execution ran out of memory.

4.1 Comparing with Korat

We compared the result and execution time of our approach, with and without BLISS
(denoted SPF and SPF+BLISS), versus Korat on counting the valid instances of four
known data structures showing different complexity dimensions: linked list, red-black
tree, binomial heap and AVL tree. We vary the number of nodes in each structure and
the size of the domain of values that can be stored. We remark that Korat has not been
designed for model counting, but its smart enumeration capabilities can be used for
this goal [15] making it a good baseline for comparison. For BLISS we used the field
bounds from previous studies.

The results are reported in Table 1. The columns SPF, SPF+BLISS, and Korat report
the analysis time for our approach with and without BLISS and for Korat, respectively.

LinkedList. This data structure implements a doubly linked list where each node
contains an integer field. Korat fails to explore the whole input domain within 5 hours
for all the cases where the list was composed of 10 nodes and the integer domain con-
tained 20 or more elements. On the other hand, SPF-based analyses terminate in less
than 2 seconds for all the considered cases. Notably, due to the simplicity of this struc-
ture, the benefit of adding BLISS does not yield any perceivable improvements.

RedBlackTree. Red-black trees are significantly more complex than linked lists, both
because of the higher number of references involved and the preservation of their invari-
ants, which requires rebalancing techniques to guarantee the red-black property [13].
The main bottleneck of Korat remains on the size of the integer domain, when the
number of nodes grows. On the other hand, for smaller integer domains the increased
complexity of the structure has a modest impact on the performance of Korat. The num-
ber of nodes has instead a significant impact on the performance of SPF-based tools,
with SPF running out of memory already with 8 nodes. Introducing BLISS reduces sig-
nificantly the execution time and memory consumption in this case, since it prevents
the symbolic execution to explore unnecessary invalid structures. This allows it to cope
with larger instances.

BinomialHeap. Despite being operationally simpler than red-black trees, binomial
heaps can also be characterized by a set of invariants making BLISS more effective in
detecting invalid structures before their complete exploration. This results in a shorter
execution time of SPF+BLISS with respect to SPF. Notice how SPF and SPF+BLISS
scale better than Korat even for small sizes of the integer domain.

AVLTree. AVL trees are search trees whose rebalancing is triggered by the violation
of a simpler invariant than red-black trees (the heights of the subtrees of every node can
differ by at most one). In this case BLISS produces a smaller improvement compared to
the case of red-black trees, though still reducing the analysis time of SPF. Korat achieves
a good scalability over this structure, though if does not scale for larger instances where
the integer domain has 20 elements or more.
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Table 1: Comparison of SPF, SPF+BLISS, and Korat (time in seconds).
L

in
ke

dL
is

t

Nodes Ints Count SPF SPF + BLISS Korat

5
20 168,421 0 0 0
50 6,377,551 0 0 3
70 24,357,971 0 0 13

100 101,010,101 0 0 51

10
10 1,111,111,111 1 1 986
20 538,947,368,421 1 1 TO
50 1,992,984,693,877,551 1 1 TO
70 40,938,441,884,057,971 1 1 TO

100 1,010,101,010,101,010,101 1 1 TO

15
10 1,111,111,111 1 1 TO
20 1,724,631,578,947,368,421 1 1 TO
50 622,807,716,836,734,693,877,551 1 1 TO
70 68,805,239,274,536,231,884,057,971 1 1 TO

100 10,101,010,101,010,101,010,101,010,101 1 1 TO

R
ed

B
la

ck
Tr

ee

Nodes Ints Count SPF SPF + BLISS Korat

5
10 3,197 27 8 0
20 146,093 26 8 3
50 17,912,981 27 8 363
70 100,606,073 26 8 476

100 618,318,461 26 8 2,796

8
10 13,037 OOM 300 1
20 10,378,733 OOM 358 238
50 33,633,553,781 OOM 354 TO
70 570,417,679,113 OOM 366 TO

100 10,968,862,744,061 OOM 357 TO

10
10 14,101 OOM 2,738 8
20 55,795,117 OOM 2,754 2,936
50 1,943,776,206,661 OOM 2,841 TO
70 71,482,977,220,937 OOM 2,742 TO

100 3,021,060,476,356,221 OOM 2,774 TO

B
in

om
ia

lH
ea

p

Nodes Ints Count SPF SPF + BLISS Korat

5
6 2,016 2 1 0

10 19,371 2 1 0
20 497,616 2 1 0
50 42,613,101 2 1 28
70 223,543,216 2 1 152

100 1,305,473,076 2 1 880

10
11 276,834,504 30 13 382
20 70,790,816,523 30 13 TO
50 482,258,613,959,406 30 12 TO
70 13,057,541,269,423,978 30 13 TO

100 439,699,627,791,397,061 30 13 TO

15
16 1,320,960,601,687,363 562 129 TO
20 31,844,676,603,881,568 559 128 TO
50 19,743,228,678,771,046,522,656 562 130 TO
70 2,836,624,163,763,256,508,895,748 560 133 TO

100 562,643,897,792,832,103,640,559,436 569 129 TO

AV
LT

re
e

Nodes Ints Count SPF SPF + BLISS Korat

8
4 25 47 39 0

10 6,893 66 61 0
20 5,617,865 66 59 92
50 18,955,370,261 69 59 TO
70 323,071,208,925 67 58 TO

100 6,232,176,942,521 67 58 TO

10
4 25 190 139 0

10 7,393 303 249 2
20 24,093,465 308 253 932
50 745,531,143,261 303 253 TO
70 26,986,817,918,525 307 255 TO

100 1,128,548,943,898,521 304 252 TO

13
4 25 707 423 0

10 7,393 2,804 2,408 17
20 95,928,665 3,318 2,983 TO
50 194,611,435,515,261 3,362 3,000 TO
70 24,729,749,799,273,725 3,343 2,977 TO

100 3,588,938,338,577,002,521 3,330 2,951 TO
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In summary, for SPF-based techniques varying the size of the integer domain does
not produce significant variations in the analysis time, while an enumeration-based ap-
proach unable to symbolically abstract the integer fields of the structures suffers scal-
ability issues even for relatively small integer domains (20 or 50 elements). On the
other hand, the complexity of the references structure is the main bottleneck of SPF-
based tools, which are required to enlarge the scope of symbolic execution, reducing
the benefits of lazy initialization. The use of BLISS is particularly beneficial when rich
invariants (which impose strong requirements on structures) are available, allowing to
prune symbolic execution paths heading toward the exploration of invalid structures.

4.2 Probabilistic Analysis

Probabilistic software analysis can be used for answering questions like:
1. Which program methods are worth focusing on to improve the software responsive-

ness perceived by the users?
2. How likely is a bug to show up when the program is used according to a specific

profile?
3. What is the perceived reliability of software for different classes of usages?

In this section we report three example applications of our probabilistic software
analysis technique by casting these question on small program snippets manipulating
data structures to show the applicability scope of this technique.
1. Rotations in a red-black tree. Red-black trees are kept almost balanced after every
insertion or deletion [13]. This is achieved by a potentially expensive rotation opera-
tion. Considering the insertion of an integer value within the range 0 − 20 into a tree
having from 0 to 4 nodes, how frequently should we expect a rotation will be required
to rebalance the tree?

Though this is just an example, answering this kind of question allows one to quan-
tify the frequency a certain method is expected to be invoked during a program exe-
cution. This would help assessing the global impact of improving the efficiency of a
specific method, and support the decisions of a developer.

In this example, the problem space is given by the set of all the valid trees with
up to 4 nodes and the finite subset of integers between 0 and 20. This space counts
567, 882 elements. Out of them, inserting the integer value into the tree requires at least
one rotation operation in 168, 112 cases, about 29.6%.

This type of information can also be exploited to compute a complexity index for
operations on data structures tailored to specific usage profiles the program is expected
to handle.
2. Assessing the criticality of an actual bug. Class BinomialHeap used as part of the
examples in this paper was first used as part of a benchmark in [39]. In [17] it was
determined that method extractMin had a subtle bug that required a binomial heap
with at least 13 nodes to be exposed. An example of an input exposing this bug is given
in [17, Fig. 6]. A consequence of this bug is that upon execution of extractMin, the
resulting binomial heap no longer satisfies its required property (attribute size no longer
reflects the actual number of nodes in the binomial heap).

Although there is a bug in this structure, how likely is this bug to actually show up
when the extractMin method is invoked?
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Table 2: Number of inputs exposing the extractMin bug.

Nodes Ints # Valid # Failing Fail prob Time (s)
12 0..12 70,401,948,540 0 0 28 + 74

0..20 14,829,486,591,568 0 0 28 + 73
0..30 1,269,649,449,162,048 0 0 28 + 71

13 0..13 1,921,213,899,450 1,546,032,456,492 0.804 49 + 151
0..20 278,713,724,302,816 235,789,399,182,528 0.845 49 + 142
0..30 36,285,348,047,086,752 31,636,080,812,285,208 0.871 48 + 147

In order to count the number of inputs that lead to a failure state (one in which
attribute size does not model the actual number of nodes in the resulting binomial heap),
we analyzed the code in Listing 1.4.

Listing 1.4: Bug in BinomialHeap (BH).
1 public static void main(String[] args) {
2 BH B0 = new BH();
3 B0 = (BH) Debug.makeSymbolicRef("B0", B0);
4 if (B0 != null && B0.repOk()){
5 B0.extractMin();
6 assert B0.size == B0.numNodes());
7 }
8 }

Executing symbolically the main method allows the repOk to generate all valid
structures. Those structures that violate the assert statement generate errors that are
caught by the underlying JVM, which then stores the numeric path conditions for fur-
ther counting of failing instances. Table 2 presents our results.

When 12 or less elements are inserted in the heap, the bug will never show up
(confirming previous evaluations regarding this bug [23,35]). So users following this
behavior will not notice the presence of the bug.

When at least 13 elements are inserted, there is the chance for the bug to show
up. However, how likely this is to occur in practice heavily depends on the size of the
domain allowed for the integer values. Indeed, the bug does not systematically occur
for every possible set of elements. Looking at Table 2, when only integers between 0
and 13 are allowed (with each value having the same probability), more than 80% of
the executions will violate the assertion. These figures can also be used to assed the
difficulty of catching such bug with naive randomized testing.

In Table 2, we report for each given numbers of nodes and integer values, the num-
ber of valid inputs in the state space, the number of inputs leading to a failure, as well
as the probability of running into a faulty outcome. Running time is presented under the
form t1+t2, with t1 the time required to compute the number of valid inputs, and t2 the
time required to compute the failing ones. Notice also in this case how times increase
as the number of nodes increases, yet remain stable for a number of nodes despite the
number of integer values considered.
3. Impact of different usage profiles. In the following we consider the impact of dif-
ferent usage profiles on the running example of the List from Listing 1.1. We consider
the case where we have at most 6 nodes and numeric values in the range 1..10.

In Section 3.5 we evaluate the probability of throwing an exceptions when executing
the method swapNode on the List example. The usage profile we considered was: 10%
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cyclic lists and 90% acyclic lists. Since we had 1, 111, 111 acyclic lists and for 10 cases
of these the exception is thrown (see Section 3.5), while none of the 6, 543, 210 acyclic
ones lead to an exception, the failure probability under this profile can be computed as:

Prf (P ) = .10 · 0/6543210 + .9 · 10/1111111 = 8.1 · 10−6
How does this probability change if the input lists were distributed differently? Let

us consider the case where we have 90% chance of a list being not null and 10%
chance that the list is null. Obviously there is only one list that is null and the remaining
7, 654, 320 cases are not null. Therefore, we obtain the following probability for failure:

Prf (P ) = .9 · 10/7654320 + .1 · 0/1 = 1.1758 · 10−6
The last case is where we use the length of the list in the usage profile. Let us

consider there is an 80% chance that the list length is less than 4, and a 20% chance the
list has at least 4 nodes (and no more than 6 as per the finitization). There are 4, 321
lists with up to 3 nodes and 7, 650, 000 lists of size 4 and more. Notice that none of the
lists with 4 or more nodes can cause an exception. The probability for exception is thus:

Prf (P ) = .8 · 10/4321 + .2 · 0/7650000 = 1.85 · 10−3
Concluding, the different usage profiles make a substantial difference in the proba-

bility of an exception being thrown for the analyzed null pointer dereference. This illus-
trates the importance of usage profiles when performing probabilistic software analysis,
which is in turn able to provide quantitative results tailored for each different (proba-
bilistic) assumption about the usage of the software.

5 Threats to Validity

We used data structures as examples. These and similar examples have been frequently
used as case studies in the evaluation of SPF and come as examples with the Korat
distribution, making them appropriate for the comparison.

Computing bounds and writing declarative invariants pose extra burden on the users
of SPF+BLISS. This is not a part of the technique, and the user may decide not to use
the BLISS optimization. Yet BLISS naturally fits in this research as one may conclude
from the experiments reported in Table 1.

We did not verify the implementation. For all the subjects where at least two of the
three methods completed the analysis within the time bound of 5 hours, the resulting
counts matched, cross validating their correctness for the cases under investigation.

6 Related Work

Several model counting tools are available but they do not support data structures
directly. Birnbaum et al. [6] present an algorithm for counting (boolean) models of
propositional formulas. Barvinok’s algorithm uses Integer Linear Programming (ILP)
to count integer models [4]. As already mentioned, LattE[14] implements (an enhanced
version of) Barvinok’s algorithm. RelSat solves instances of propositional SAT using
constraint satisfaction problem (CSP) look-back techniques [1].

Several (dynamic) symbolic execution techniques encode data-structure constraints
using a theory of select/store (e.g. KLEE [10]). In such techniques there is no need to
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explicitly initialize the references as they can deal with symbolic references. Note how-
ever that the counting of data-structure models can not be done simply on the symbolic
formulas, using e.g. [11] for counting over SMT constraints. E.g. one can not simply
count all the (cyclic and acyclic) lists up to size 100 by applying SMT-based model
counting over a constraint that encodes “true”. Instead, our procedure, that blends ex-
plicit enumeration with symbolic reasoning, could be used.

The SMC tool [29] addresses constraints on strings. It counts model for con-
straints written in a string language expressive enough to model constraints arising
from JavaScript applications and UNIX C utilities. It uses a technique that leverages
generating functions as a basic primitive for combinatorial counting, and it is therefore
quite different than our approach, which aims at handling arbitrary data structures.

Our work is also related to probabilistic program analysis [21], probabilistic abstract
interpretation [30] and probabilistic model checking [22]. We discuss this below.

Probabilistic analysis based on symbolic execution has been described in e.g.,
[18,36,15]. Geldenhuys et al. [18] considered uniform distributions for the inputs, lin-
ear integer arithmetic constraints, and used LattEMacchiato [14] to count solutions of
path conditions produced during symbolic execution. Sankaranarayanan et al. [36] and
Filieri et al. [15] proposed similar techniques to compute probabilities of violating pro-
gram assertions. Both techniques remove the restriction of uniform distributions. As
with [18] both approaches only consider linear constraints. Sankaranarayanan et al.
developed algorithms based on Linear Programming (LP) solvers for under and over-
approximations of probabilities. Filieri et al. used the LattEtool to compute probabili-
ties. Follow-on work provides treatment of nondeterminism [28] and describes statis-
tical exploration of symbolic paths [16]. Another simulation-based approach for the
analysis of probabilistic programs has been proposed in [31].

The technique in [7] proposed a compositional quantification of the solution space
based on Monte Carlo estimation. The approach can deal with arbitrarily complex nu-
meric constraints over floating-point domains. Bouissou et al. [8] and Adje et al. [3]
handle non-linear numeric constraints with a combination of abstraction based on affine
and p-box arithmetic. The approach relies on the use of noise variables to represent the
uncertainty of non-linear computations.

Lazy initialization is related to materialization of summary nodes in shape analy-
sis [40]. However its application to model counting is new.

7 Conclusions

We presented an technique for model counting over constraints on complex data struc-
tures with numeric fields. The technique uses symbolic execution with lazy initialization
to compute the satisfying heap structures, while keeping the constraints on numeric data
symbolic. The valid assignments for the numeric constraints are then solved with off-
the-shelf model counting procedures that target numeric domain. Further field bounds
and various constraint optimizations are used to speed-up the technique. Experimental
results highlighted the benefits of the proposed technique.

There are many avenues for future work. First note that it is the responsibility of
the user to write the complex (Java) predicates; further the user needs to make sure
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that the predicates in the usage profile are disjoint. To ease this burden we have defined
patterns for some commonly used predicates (such as acyclic and size for linked lists)
that can be used and modified easily. In the future we would like to explore established
logics, such as separation logic, to simplify the specification task. We will then need to
synthesize the Java predicates encoding them. We also plan to explore runtime analysis
to derive profiles directly from running systems. Further we plan to apply the model
counting technique in the security domain.
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