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Abstract The goals of this chapter are to identify the challenges involved in self-
adaptation (including learning and knowledge sharing) of multiple self-aware sys-
tems (or system collectives). We shall discuss the techniques available for deal-
ing with the challenges identified (e.g. algorithms for conflict resolution, collec-
tive learning, negotiation protocols, etc.), and which are appropriate given assump-
tions regarding the collective system architecture. We refer to notions of knowledge,
learning and adaptation; various self-awareness levels; and reference scenarios in-
troduced in chapter 1.5.

1 Introduction

Whereas Chapter 5.1 dealt with issues of learning and adaptation by individual self-
aware entities, the purpose of this chapter is to explore challenges, opportunities,
and methods that arise in the context of learning and adaptation by collectives con-
sisting of multiple self-aware entities. In other words, we treat issues of learning,
adaptation and self-awareness at the system level. Nevertheless, we are interested in
learning mechanisms at at least two levels of abstraction: in the individual systems
which compose the collective, and at the level of the collective itself. An important
question concerns how the structure of distributed knowledge, and local learning
and adaptation, can affect and give rise to global learning and adaptation behavior.
We elaborate upon reference scenarios of Chapter 1.5 to explore issues of learning,
adaptation and self-awareness at the collective system level in both cooperative and
competitive settings. For a focus on architecture in collectives of self-aware sys-
tems, including assumptions relating to modes of interaction and relation within the
collective, please see Chapter 2.2.

According to the terminology introduced in Chapters 1.2 and 2.2, we focus on
collectives that are self-aware at the level of individual entities, and which may or
may not be self-aware at the level of the collective itself. For the most part, we will
assume that there is no entity responsible for coordinating or otherwise managing
the collective as a whole in accordance with goals that are described at the level of
the collective. In other words, imagine that the entities adapt using the techniques
described in chapter 5.1, with no conception of or regard for the existence of other
adaptive entities in the system. However, in individual agents, the scope of adaptive
or other behavior is clearly enabled or limited by its self-awareness. While this is
true of the component members of the collective, it is also the case for the collective
itself. When considering the case of collective adaptation therefore, two important
questions arise: how does distributed self-awareness enable or limit adaptation at
the level of the collective? and, more precisely perhaps: how do different types (cf.
Chapter 1.2) and organizations (cf. Chapter 2.2) of collective self-awareness impact
on collective adaptation?

Based on the more detailed concepts related to collectives and self-aware col-
lectives introduced in Chapter 2.2, we employ UML hierarchies and UML collab-
orations to denote collectives of self-aware systems. We also broaden the scope of
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these concepts by not requiring that direct communication must be present between
the involved systems, and we only assume that we want to study the correlation
(or anti-correlation) between the systems in the collective. These definitions follow
the design taxonomy introduced in [36]. In addition, we distinguish the special case
where the correlation observed between systems results from information-sharing
during runtime and thus is a form of coupling. Therefore, various additional cases
can be covered, including local random behavior of systems in a collective with no
coordination, direct forms of coordination of systems in a collective using messages,
and indirect forms of coordination of systems in a collective based on stigmergy.

As detailed in Chapter 2.2, sometimes there is only a negligible correlation be-
tween systems at the considered level of abstraction, such that it is possible to con-
sider the systems involved in the collective as independent. In such cases, the be-
havior of the collective at the considered level of abstraction is more-or-less the
superposition of the behaviors of the separate systems, as long as certain constraints
are fulfilled that guarantee that the coupling can be neglected. However, in cases
where the design of the collective has to consider that some correlation (usually
some coupling) occurs that is not negligible at the considered level of abstraction,
this correlation may have either adverse effects, due to the correlation, that have to
be mitigated; or expedient effects from which the collective behavior can benefit.

In line with Chapter 2.2 we will discuss the role that self-awareness and the
related coordination has with respect to mitigating or exploiting the correlation be-
tween the systems of a collective. For this purpose, we will look into the elements
of learning, reasoning, and acting processes making-up the LRA-loop, as per the
definition of self-aware computing systems in Chapter 1.1. In particular, this will
include discussions on how to mitigate or exploit the correlation by choosing the
right design for the collectives concerning the self-awareness scope (see Chapter
1.2 and 2.2) and coordination approach (see Chapter 2.2 ).

This chapter is structured as follows. Each of the next several sections deals with
a general class of collective challenge or opportunity. The first subsection of each
section describes one or more scenarios, several of which are extensions of scenar-
ios introduced in Chapter 1.5. The focus is upon behavioral phenomena that result
from interactions among self-aware entities — many of which are undesirable, but
some of which are desirable. In the second subsection of each section, we discuss
approaches that may be taken to cope with or eliminate undesirable phenomena. The
third and final subsection discusses ways in which desirable collective phenomena
might be encouraged and capitalized upon.

In the first few sections, we consider non self-aware (or pre-reflective) collectives
in which the entities are individually self-aware, but for which there is no awareness
at the level of the collective, and for which no entity is aware of the self-awareness
of other entities in the collective. First, in section 2, we discuss interactions among
entities whose goals are not in direct conflict, and which act in ignorance of one
another’s goals, demonstrating situations in which the actions undertaken to reach
their individual goals are in conflict. In section 3, we discuss situations in which the
goals among entities are in direct conflict, and in which the entities act in ignorance
of or despite the goals of other entities. Next, in Section 4, we consider collectives in
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which the individual entities learn, treating both the case in which they are unaware
of one another’s existence and the opposite case, in which they know about (and
take into account) one another’s existence. Here we explore effects that can occur
when multiple self-aware entities are all adapting to their environment and to one
another simultaneously. Section 5 then treats situations in which entities coordinate
deliberately with one another, either via centralized or decentralized techniques and
either based on cooperation or competition relations (Cf. Chapter 2.2). Finally, in
Section 6 we summarize the chapter and make some general observations.

2 Actions

In this section, we consider collectives in which the entities are only locally self-
aware. That is, they possess an awareness of themselves, but they either do not rec-
ognize or otherwise do not account for the behavior, state, or self-awareness of other
entities in the system. Additionally, we suppose that the individual goals that govern
each individual entity’s behavior are not inherently in conflict. Through a series of
scenarios, we illustrate negative and positive global behaviors that may occur under
such conditions. At the end of the section, we summarize our observations regard-
ing these phenomena and the means that may be taken to ameliorate or eliminate
undesirable global behaviors, or to capitalize on the desirable ones.

2.1 Scenarios

We consider two domains in which self-aware entities strive to realize goals that
do not explicitly conflict, but for which actions taken in service of those goals may
cause unintended interactions that result in desirable or undesirable collective ef-
fects. First, we describe two scenarios from the cyber-physical system domain (Cf.
section 5 of chapter 1.5) involving smart appliances in a smart home. Second, we
describe an IT scenario involving the self-aware sorting algorithm (Cf. section 3 of
chapter 1.5) plus a power manager.

2.1.1 Smart Appliances

Consider interactions that could conceivably take place between a thermostat and a
smart window. The thermostat aims to maintain room temperature within a targeted
range, for instance between 21◦C to 23◦C, while consuming as little power as pos-
sible. In the same room, a smart window controller opens the window periodically
to maintain air freshness, and it also opens and closes the blinds to regulate room
luminosity. The aforementioned behaviors are governed by the home owner’s pref-
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erences, along with environmental conditions (such as the weather and the presence
of people in the home).

The goals of the thermostat and the smart window are not explicitly related, but
nonetheless their actions can affect one another. For example, if the smart window
is open on a cold day, the thermostat may struggle to maintain the targeted tempera-
ture — and even if it succeeds in doing so, the heater it controls may consume much
more power than it would have had the window stayed shut. Similar issues may
occur if the thermostat controls an air-conditioning device during summer months.
For example, if the smart window controller opens the blinds on a sunny day to
increase luminosity, this could force the thermostat to choose between consuming
extra power to attain the temperature goal, or deliberately falling short on the tem-
perature goal in order to avoid excessive power consumption. On the other hand,
there may be other conditions under which the smart window and the thermostat
unwittingly help one another accomplish their respective goals. For example, if the
smart window opens the blinds to increase luminosity on a cold sunny day, the open
blinds may help warm the room, allowing the thermostat to attain its temperature
goal with less effort than would have been required had the blinds been closed.

2.1.2 Adaptive Sorting and Power Management

Consider the adaptive sorting service introduced in Chapter 1.5, which strives to per-
form the sort as quickly as possible without exceeding a preset limit on the amount
of CPU that should be used. It uses linear regression to adaptively estimate the
number of CPU cycles required per basic sort operation, using observations over
the last 5 minutes. Then, it sets the concurrency to a level that is calculated to keep
the CPU usage in the neighborhood of 90%. Consider as well the adaptive power
management algorithm introduced in Chapter 5.1, embodied as a service. It allows a
server to use power up to a pre-defined limit, above which it uses a feedback control
mechanism to reduce the chip frequency to a value that is just below that limit.

When taken individually, the sorting service and the power manager are using
reasonable approaches to controlling the system, ensuring that it operates efficiently
and stably. Each goal is quite reasonably trying to achieve a balance between ac-
complishing work and reducing resource consumption. However, consider what
may happen when the power management algorithm controls the server on which
the sorting service is running. Suppose that the power manager detects a slight ex-
ceedance in the power, and adjusts the chip speed downward. After the chip has been
operating at a slower speed for a while, the sorting service will notice a decrease in
the rate at which sorting operations are performed, and conclude that the number of
operations required per sort has increased. To obtain more resource for sorting, the
sorting service adjusts the concurrency level downward. With the decreased con-
currency, there is less demand placed on the server, whereupon the power manager
decides that it can raise the chip speed. The increased chip speed increases the rate at
which sorting operations are performed, causing a reversal of the logic that was used
to decrease concurrency, and the sorting service now increases concurrency. This in
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turn may cause an exceedance of the power limit, beginning the cycle anew. A very
related phenomenon was reported by Kephart et al. [22], who observed spontaneous
oscillations generated by an unanticipated feedback loop between a power manager
and a performance manager (illustrated in Figure 1).

Fig. 1 Effect of CPU frequency feedback on system behavior. (a) WXD receives no feedback (b)
WXD receives feedback.
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2.2 Mitigating undesirable collective behaviors

The scenarios described in this section exhibited two basic classes of undesirable
collective behavior that may occur when two or more self-aware entities attempt to
satisfy goals that are not inherently in conflict, but for which actions taken in an
effort to satisfy those goals may create inadvertent conflicts or misalignments that
result in suboptimal behavior:

1. Conflicting actions that waste resources and/or thwart attainment of one or more
individual goals; and

2. Spontaneous instabilities that waste resources and/or thwart attainment of one or
more individual goals

We now examine each of these classes in turn, first diagnosing their cause and
then (based on that diagnosis) proposing and critiquing various possible approaches
to reducing or eliminating these undesirable collective behaviors.

The first class of behavior was exhibited in the scenario involving the thermostat
and the smart window. Abstracting from the specifics of that scenario, it is apparent
that such phenomena may occur when actions taken by one entity induce an envi-
ronmental state change that affects the goal of another entity, i.e. the actions taken
by the entities are coupled through the impact those actions have on the environ-
ment in which both are situated. In more mathematical terms, an action ae taken by
entity e causes the system state S to evolve to state S′, and the difference between S
and S′ matters from the perspective of a second entity ε . In that particular example,
when the smart window controller opens the blinds to increase luminosity, the act of
opening the blinds causes not just the luminosity to increase, but it also has the side
effect of causing the temperature to rise. To the thermostat, the increased luminos-
ity is of no consequence — that aspect of the difference between S and S′ does not
matter to it — but the increased temperature does matter, as the thermostat’s goal
concerns temperature.

The underlying cause of the conflict is that the smart window controller is un-
aware of two important facts: a) opening the blinds affects temperature; and b) tem-
perature affects the behavior of another adaptive entity. Note that the situation is
asymmetric, i.e. the action taken by the thermostat to increase or decrease heating
or cooling does not affect luminosity, the variable of interest to the smart window
controller. Thus the thermostat’s lack of awareness of the existence of the smart
window controller and its interest in the luminosity of the room does not contribute
to the problem.

What can be done to mitigate this class of collective behavior? In general, an
entity A whose actions create a state change that matters to some other entity B
must first of all become aware of its impact upon B, and second modify its behavior
in some way that uses that awareness to reduce or eliminate the conflict. For the
thermostat scenario, the smart window controller must somehow become aware that
its actions affect temperature, and that temperature matters to some other adaptive
entity in the system, and moreover it must somehow change its behavior to take this
new awareness into account.
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Many general approaches can be contemplated, some of which we enumerate be-
low. For clarity, all are expressed in terms of the thermostat/smart window scenario,
but the generalization should be readily apparent:

1. Joint control. Anticipating that they will be used in conjunction with one an-
other, a joint controller is designed to manage the behavior of the smart window
and the thermostat (or perhaps the thermostat can be eliminated entirely). The
user specifies joint luminosity and temperature goals, along with any tradeoffs
that may be needed. The joint controller can be situated in either appliance — in
fact it could be designed into both, and if both the smart window and the ther-
mostat happen to operate in the same room then one of the joint controllers can
voluntarily turn itself off and let the other take control. The joint controller can
also be placed in a dedicated device, which monitors and inhibits other devices
when their actions risk causing conflicts. From an architectural perspective, this
approach corresponds to a Hierarchy pattern where devices implement a coop-
eration relation with the joint controller (as discussed in chapter 2.2). A valid
criticism of this approach is that such conflicts may be difficult to envisage at de-
sign time because the heater and window operate a priori in different domains –
temperature versus air freshness and luminosity, respectively. Similar issues may
occur if an air-conditioning device is added in the summer, as the window may
open the blinds on a sunny day to increase luminosity, which in turn will also
cause the temperature to rise.

2. Distributed control with derived individual goals. Anticipating that the smart
window may be used in an environment where a thermostat is present, the smart
window controller is designed to take into account data provided by temperature
sensors located in the room in which it operates. The user specifies joint lumi-
nosity and temperature goals, along with any tradeoffs that may be needed. The
joint goals are transformed into a set of derived goals or policies to be followed
by the smart window controller, which if followed are expected to produce nearly
the same behavior as would be exhibited by a joint controller. The smart window
then operates according to these derived goals, which now take temperature into
account. Since devices do not communicate with each other directly but only
via their impacts on their joint environment (i.e. temperature), this case corre-
sponds to a solution implementing a Stigmergy pattern (as discussed in chapter
2.2). Also, with respect to the relation types identified in chapter 2.2, systems
implement a synergy relation with respect to their goals, since they have positive
effects on each-other’s goals yet without being explicitly aware of this. At the
same time, systems implement ignorance relations with respect to their knowl-
edge and actions, since they are unaware of each other and do not exchange
any direct information to coordinate their knowledge and actions; coordination
is provided by-design instead.

3. Distributed control based upon individual goals derived from global feed-
back. The smart window controller is given access to temperature readings as
a potentially interesting environmental variable, and provided with moment-by-
moment readings of a utility variable that indicates the degree to which the over-
all joint goal of luminosity plus temperature is satisfied. The smart window con-
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troller can then learn an association between its actions, the temperature, and the
overall utility, and using that model can modify its behavior to try to maximize
the joint utility. As in the case above, this corresponds to a Stigmergy pattern,
since devices only react to each-other’s actions indirectly, via feedback from the
environment. The types of relations they implement are also similar to the pre-
vious case. The main difference consists in the increased adaptability (e.g. via
learning) of this feedback-based case, with respect to the previous one where
goals were hard-coded at design time.

4. Changing one or both strategies. In the smart home example, the thermostat
may choose to achieve a temperature goal by opening the window shutters dur-
ing a sunny winter day (hence heating by solar energy and saving energy for
optimising a power goal). This, in turn, may conflict with the window shutters
luminosity goal, which would require closing the shutters partially to avoid di-
rect sunlight. If the thermostat chose to switch on its power instead, the conflict
would be solved, or more precisely avoided. Such strategy adaptation can be per-
formed either at design-time, to avoid conflicts, or at runtime, when the conflict
is detected automatically.

In general, the solutions discussed above can be implemented either at design-
time, when conflicts are being predicted, or during runtime, in cases where systems
are able to detect conflicts dynamically (e.g. [20]) and adapt accordingly.

While joint control can certainly solve the problem of conflicting actions, it is
impractical under many conditions. It can be extremely difficult for designers to
anticipate all of the possible combinations of controllers that could be co-present
in a given environment, and to anticipate the couplings that might occur. A more
flexible, decentralised solution can be more suitable for unpredictable open envi-
ronments, where both the initial execution context and the participating devices
may change during runtime. Here as well, the levels and kinds of self-awareness
that devices require of each other (chapters 1.2 and 2.2) will depend on the extent
to which device discovery and coordination can be predicted at design-time. At the
same time, while more decentralisation and higher self-awareness capabilities in-
crease the adaptability of devices and of the entire collective, it also increases the
overall system complexity and raises several risks (e.g. more unpredictability or de-
creased performance). Ideally, design-time solutions should be provided to address
aspects that are known and unlikely to change, in order to ensure desirable outcomes
and stable behaviours – e.g. important in a smart home scenario; and, self-adaptive
solutions with various degrees of self-awareness should be provided to deal with
unpredictable aspects – e.g. where a safe, yet perhaps non-optimal solution is better
than system failure.

The second class of behavior, spontaneous oscillation, was exhibited in the sort-
ing algorithm/power manager scenario. At a high level of abstraction, one can see
that spontaneous oscillation has the same basic cause as the first class, except that
the situation is now symmetric rather than asymmetric: each of the entities induce
an environmental state change that affects the goal of the other, thereby creating
the potential for an infinite cycle. The environmental coupling in the sorting algo-
rithm and power manager scenario occurs, not through a single shared resource,
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but instead through two different environmental variables: the sorting algorithm in-
advertently affects power consumption by adjusting concurrency, while the power
manager inadvertently affects computational speed by adjusting chip frequency. A
system with such couplings could be modeled to a first degree of approximation as:

x′(t) = αy(t)

y′(t) = βx(t), (1)

from which one can derive y′′(t) = αβy(t). When the product αβ is negative (as it
is in the case of the power manager and the sorting algorithm), y(t) is sinusoidal;
when it is positive then the solution is a growing exponential (a positive feedback
loop that runs amok until something in the system saturates).

For spontaneous oscillations that occur due to couplings to two different envi-
ronmental variables, we offer the following set of mitigations:

1. Breaking the feedback loop by using any of the methods listed above for miti-
gating asymmetric resource conflicts, such as joint control or distributed control
with derived individual goals. Note that applying such a mitigation to just one
of the two couplings may suffice to break the feedback loop, but it may leave
the system with the asymmetric goal conflict problem, resulting in suboptimal
behavior. In such a case, the mitigation may be applied to the second coupling as
well.

2. Giving one or both of the entities knowledge of the variables through which
their actions are coupled, such that it can update its model appropriately. Such
a method was employed by Kephart et al [22] to eliminate the spontaneous os-
cillation shown in Figure 1. Specifically, the power manager conveyed to the
performance manager the chip frequency setting at which it was operating. With
this information, the performance manager was able to change its model for the
speed at which computations were being performed, enabling it to stop reacting
too strongly when the chip frequency was changed. This simple change elimi-
nated the oscillations entirely.

Another case of undesirable synchronisation can occur when multiple entities
within a collective react in the same way to the same stimuli detected in their shared
environment. For instance, if all devices detect a power consumption peak (e.g. by
monitoring the frequency of a shared micro-grid) then they may all react simul-
taneously to reduce their consumptions and to lower the overall load on the grid.
This may in turn cause an abrupt fall in overall consumption and risk a blackout.
If devices then detect this lack of consumption and start consuming, oscillations
may occur and threaten the grid. Similarly, when all thermostats in a room react
independently to temperature fluctuations, undesirable oscillations may also occur.
Direct coordination may be employed for addressing this issue when dealing with
relatively small numbers of devices. Alternatively, randomising reactions to com-
mon events can also be employed when dealing with large-scale collectives. This
latter solution has been used [1] for desynchronising electric devices connected to a
shared power grid, as discussed above.



Self-Adaptation in Collective Self-Aware Computing Systems 11

2.3 Capitalizing on desirable collective behaviors

In other scenarios, global synchronisation can be a desirable property of a collec-
tive system, which can help achieve a global goal collectively. In such cases, system
synchronisation helps them achieve goals more efficiently. This is the case for in-
stance in robot swarms where all robots self-synchronise their speeds, and/or their
movement directions in order to better achieve some collective goal [33].

In addition, most cases of spontaneous synchronizations can be capitalised upon
if some extra design and tuning are introduced to regulate their behaviours. Most
often, some form of randomisation that is proportional to the number of entities and
dependent on the desired aggregated effect can be introduced to obtain lightweight,
highly flexible and scalable self-adaptation solutions.

3 Reasoning & Goals

In this section, we consider the individual goals that drive the reasoning and sub-
sequent actions of self-aware entities, and discuss collective behaviors that arise.
As in Section 2, we consider here collectives in which the entities are only locally
self-aware; that is, they possess an awareness of themselves, but they either do not
recognize or otherwise do not account for the behavior, state, or self-awareness of
other entities in the system. In contrast to Section 2, however, here we suppose that
the individual goals that govern each individual entity’s behavior are inherently in
conflict, either overtly or indirectly through their mutual need for the same limited
resource. collective. This is i) because individual components may themselves dif-
fer, for example in terms of capabilities or resources, ii) because they may be in
different locations, and hence be subject to different experiences, and iii) because
the individual entities may have different domains, processes, accuracy or levels of
self-awareness. Therefore, learning, adaptation and knowledge present will all vary
between individuals in typical collective systems (e.g. [16, 31]). Through a series of
scenarios, we illustrate negative and positive global behaviors that may occur under
such conditions. At the end of the section, we summarize our observations regard-
ing these phenomena and the means that may be taken to ameliorate or eliminate
undesirable global behaviors, or to capitalize on the desirable ones.

3.1 Scenarios

3.1.1 Heater vs. air conditioner

As a first, very simple example of direct goal conficts, consider the case of two
(misconfigured) appliances: a heater that aims to maintain temperature above 24◦C,
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and an air conditioner that aims to keep the temperature below below 22◦C1. Several
different behaviors might arise in such a situation:

1. If the heater and air conditioner are approximately equal in heating or cooling
capacity, and if both operate continually, the system might stabilize at a tempera-
ture in between the two set points. Each would labor continually to achieve their
goal, wasting enormous amounts of energy in the process.

2. If the heater or the air conditioner are substantially more powerful than the other
appliance, and both operate continually, the temperature may stabilize at the set
point of the more powerful appliance. As above, tremendous amounts of energy
could be wasted in the process.

3. If the heater and air conditioner operate sporadically, each turning off when their
set point is met, the system could oscillate: when the heater reaches its goal, it
turns off for a while, allowing the air conditioner to start bringing the temperature
down. If the air conditioner accomplishes its goal before the heater can turn on,
it too will turn off. Then, when the heater turns on, it will once again warm the
room — and so the cycle may continue indefinitely, wasting lots of energy. Even
if the heater and air conditioner don’t act quickly enough to completely reach
their set points before the other appliance turns on, significant oscillation (and
energy wastage) may occur.

Of course, if one of the appliances were to become aware of the other’s goal, it
could at least detect the conflict and warn the user about the conflict, in hopes that
the user would then rectify the conflict by changing one of the goals.

3.1.2 Dishwasher vs. oven

As a second example of direct conflicts among goals, consider interactions that
might take place between a smart dishwasher and a smart self-cleaning oven. The
dishes must be washed and the oven must be clean by 9am, and furthermore the cost
of electricity consumed by these appliances must be minimized. Due to a constraint
on the total amount of power that may be consumed by the smart home, the oven
(which consumes up to 3kW) and the dishwasher (which consumes up to 2kW) may
not consume more than 4kW in total for a period of longer than 5 minutes (i.e. there
is a soft circuit breaker). Each appliance checks every 5 minutes to ensure that its
power consumption is not causing the total power consumption for the house to ex-
ceed the limit. Suppose further that the cost of electricity is $0.20 for most of the
day, but reduced to $0.10 between midnight and 6am.

Now imagine that each appliance pursues its own objectives independently, ig-
norant of the goals (or even the existence) of the other appliance. In an effort to
minimize cost and ensure that their cleaning jobs are done before 9am, both appli-
ances might turn on automatically as soon as the rates go down, at midnight. After
5 minutes, each would sense that it is causing the total power to exceed the limit,

1 As ridiculous as it may sound, anecdotally such situations have been observed in industrial build-
ings, and one basic rule in doing energy audits is to check for this type of conflict.
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and voluntarily turn itself off. After waiting another 5 minutes, each would sense
that the current power consumption of the house plus what they anticipate adding
to that consumption would fall under the limit, and so each would turn itself on
again. Five minutes later, each would discover that they are causing the limit to be
exceeded again, whereupon each would turn itself off. This oscillatory cycle would
continue for a while, until one or the other (probably the dishwasher) finally finishes
its job, leaving the other to continue uninterrupted. Alternatively, if the warm-up
time for each appliance is longer than 5 minutes, neither would ever finish their
job. In any event, regardless of whether either or both finish cleaning, the contin-
ual cycling would potentially shorten the lifetime of both appliances, cause frequent
exceedance of the power limit, and create instabilities in total power consumption
that might be problematic for neighboring homes. The instability might even affect
the electric grid as a whole. If similar smart appliances are installed in many homes
throughout the grid, the common electric utility pricing policy (exacerbated further
by a propensity for consumers to leave appliance goals at common factory settings)
might trigger synchronized instabilities in smart homes throughout the grid.

On the other hand, one can also envision circumstances under which indepen-
dently acting appliances might function efficiently with no explicit coordination.
Suppose that the goals of the two appliances are exactly as described above, but a
small bit of randomness is introduced into the algorithms used to realize those goals,
such that the oven waits until 12:02am to turn itself on, while the dishwasher waits
until 12:04am. Consider the dishwasher’s perspective first. When the dishwasher
wakes up and decides whether to turn itself on, it will decide not to do so, be-
cause the extra 2kW that it will add will cause the total consumption to be too high.
Thenceforth, at 5 minute intervals, the dishwasher will check again and come to the
same conclusion — until the oven finishes its job, at which point the dishwasher
will find that it can turn itself on. From the oven’s perspective, it will reconsider its
state at 12:07am and find that it is fine to stay on, as the total power consumption
for the house remains below the limit (because the dishwasher has decided not to
turn on). A similar thought experiment shows that even if the starting times for the
two appliances are not randomized, randomizing the time intervals between deci-
sions will also prevent disastrous synchronous power cycles. If some randomness
is incorporated into the algorithms, one cannot predict which appliance will turn on
first, but whichever one does so will stay on until finished, whereupon the second
will turn itself on and then finish. This is an example of a beneficial spontaneous
(or emergent) coordination that could occur among two (or even more) self-aware
appliances that have no direct awareness of one another.

3.1.3 Community of smart houses interacting with electric utility

As a third example, we shift our perspective a level up in scale from the smart
home. Consider a multitude of smart homes, connected by a power grid owned
by a utility that prices energy dynamically according to supply and demand. Each
smart home may have a power manager responsible for ensuring that the overall



14 Authors Suppressed Due to Excessive Length

power consumption of each house does not exceed some limit. As illustrated in
previous scenarios, this may be accomplished by curtailing energy use by various
appliances. Note that, in its effort to intelligently manage the consumption of power
by household appliances, a smart home’s power manager has a slight effect upon
the overall demand within the grid, and that its level of demand for power in turn
affects prices in the grid. Since all homes see and can respond to the same price at
the same time, prices and power consumption across all of the homes in the grid are
coupled to one another, and one can therefore envision a variety of dynamics that
include oscillations in price (price cycles) and power consumption.

As a crude approximation to this coupling, imagine that the aggregate demand
for power p is approximately inversely related to the price of power π , while the
price π is linearly related to the aggregate power consumption p, i.e.

p′(t) = −απ(t)

π
′(t) = β p(t), (2)

One can readily see that Eq. 2 is essentially identical to Eq.1, and therefore capable
of exhibiting the same cyclical dynamics. Such cycles in price and power consump-
tion may hurt both consumers and the electricity provider, as they introduce extra
uncertainty into prediction (and therefore planning).

3.2 Mitigating undesirable collective behaviors

The heater vs. air conditioner scenario exemplifies direct goal conflicts that can re-
sult in considerable waste of resources, or even spontaneous instabilities in system
behavior. Recovering from such a situation requires that the goal conflicts be de-
tected and then resolved in some way. One method by which self-aware entities
could recognize that they are involved in a goal conflict with one or more other enti-
ties is to recognize that they are consistently failing to meet objectives, and advertise
this fact to other entities in the system, along with some information about the vari-
ables or metrics that are not behaving according to expectations. Upon receiving
such information, other self-aware entities could check the variables and/or metrics
that are most relevant to their function. If there is overlap, the overlapping goals or
metrics could be exposed to a human user of the system, or else to some automated
authority operating within the system. Once alerted to the conflict, a user may then
specify additional goals or preferences that resolve the conflict. One approach to
resolving such conflicts is to prioritize some goals higher than others. Another ap-
proach is to define a utility function that maps the state (as defined by all of the
metrics that matter to the user) to a scalar, in which the system goal is to reach a
feasible state that maximizes the utility subject to any constraints that might also
be specified. Determining how a self-aware system might exploit models of itself
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and its environment to elicit additional goals and preferences that suffice to resolve
detected conflicts is a worthy research challenge [30, 28].

In the smart homes and power grid scenario, the periodic oscillations in the price
and the usage of electric power result from a cause similar to that which drove the
spontaneous oscillations in the sorting algorithm and power manager scenario of
section 2.1. In that case, the sorting algorithm and the power manager each induced
an environmental state change that affected the goal of the other. Here, the smart
homes each adjust their power consumption in reaction to the electricity price set
by the utility, while the utility adjusts its price in response to the aggregate power
consumption of the smart homes. All of the mitigation mechanisms discussed in
section 2.2 apply here. Since the smart homes are a collective rather than a single
individual entity, some additional mitigations are possible. For example, the smart
homes might collaborate with one another via negotiation or some other mechanism
to coordinate with other homes to make the overall consumption more inherently
stable, thereby making prices more stable, which in turn results in less susceptibil-
ity to consumption oscillations. Flexible houses with consumption reduction and /
or storage capabilities might anticipate peak prices and deliberately consume less
energy at times when other households are demanding more, resulting in more sta-
bility and lower overall payments to the utility. Houses that are less flexible in their
energy consumption might still contribute to scheduling by advertising their con-
sumption predictions, thereby enabling the more flexible houses to schedule their
power consumption to avoid oscillations.

In the dishwasher and oven scenario, we also observed spontaneous oscillations.
However, the underlying cause is of a different nature, and therefore the mitigation
strategies are necessarily different. The environmental coupling in the sorting algo-
rithm and power manager scenario occurs through two different environmental vari-
ables: the sorting algorithm inadvertently affects power consumption by adjusting
concurrency, while the power manager inadvertently affects computational speed by
adjusting chip frequency. However, in the case of the dishwasher and oven, there is
a single environmental variable through which their actions are coupled — a shared
resource of which there is a limited supply, electric power.

This situation is closely related to computational ecosystems, large-scale, dis-
tributed, decentralized computing systems composed of agents that each require a
specific type of resource for their operation. Each agent uses exactly one resource
at any given moment in time, and asynchronously and independently reconsiders
which to use, based upon an expected payoff that depends on their belief about the
current usage of that resource by other agents. An agent’s belief about the current us-
age of each resource may not be entirely correct, due to inherent uncertainty and/or
time delays. Kephart et al. [26, 27] showed that, in the limit of large numbers of
agents, the dynamics of resource consumption in computational ecosystems could
be modeled as a differential-delay equation. If the uncertainty is sufficiently large
and/or the delay is sufficiently low, the solution to the differential-delay equation
is damped oscillations that settle to a fixed equilibrium, but for small uncertainty
and/or large delays the solution may be persistent oscillations, possibly quite com-
plex — even chaotic — in nature. The dishwasher-oven scenario involves only two
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agents, and for that case the electricity consumption is best modeled as a difference
equation, but the principles and the dynamics are very similar.

For spontaneous oscillations that arise from constraints on shared resources,
some possible approaches to stabilizing the system include:

1. Introducing randomness into the actions of the entities. For computational
ecosystems, Kephart et al. [26] showed that introducing randomness into the de-
cision about which resource to use (modeled as softening the decision function
for choosing a resource as a function of the usage of all resources) could elimi-
nate oscillations at the expense of shifting the stable operating point to one that
is less optimal globally.

2. Introducing heterogeneity into the goals of the entities. For computational
ecosystems, Kephart et al. [26] also showed that if the agents’ resource needs are
heterogeneous then the ecosystem as a whole is much less vulnerable to sponta-
neous instability; in effect, the agents settle into different niches. Such a strategy
is only possible in situations in which the goals of the individual agents may be
controllable by a system designer. As above, if this causes the goals to differ from
those really intended by the designer, then this greater stability is achieved at the
cost of suboptimal behavior.

3. Reducing information delays. Since this type of spontaneous instability arises
from a differential-delay equation, and the susceptibility to such instability tends
to increase with the delay, stability can be restored by reducing delays in infor-
mation regarding resource usage (if it is possible to do so).

4. Endowing entities with an awareness of other entities, and some ability to
approximately predict their behavior. For computational ecosystems in which
some of the entities are able to predict the behavior of other entities (or at least
the collective behavior of the system as a whole), Kephart et al. [27, 23] showed
that the overall behavior may improve provided that the proportion of predictive
agents is small. However, the collective behavior can become even more unstable
(and strongly suboptimal) if too large a proportion try to predict the collective
behavior of the system and act on that basis.

5. Introducing a resource broker to resolve resource conflicts. If entities can
not resolve resource conflicts cooperatively, one or more resource brokers can
be charged with governing resource usage in the system. Rather than each entity
placing a direct demand on resource usage, they submit requests to a resource
broker that describe the extent to which they need resource, and the broker de-
cides how much resource to allocate to each such entity. Walsh et al. [38] de-
scribed a system that allocated compute resources, in which each of several ap-
plication managers could send to a resource broker utility functions describing
the value they would realize if they were to as a function of the amount of re-
source that they might be granted by that broker, and the broker determined the
resource allocation by maximizing a (perhaps weighted) sum of utility functions.



Self-Adaptation in Collective Self-Aware Computing Systems 17

3.3 Capitalizing upon desirable collective behaviors

The scenarios of this section focussed exclusively on undesirable collective effects
that may occur when multiple self-aware adaptive entities pursue their own goals
without considering adaptive goal-driven behavior by other entities operating within
the same environment. However, there are conditions under which no serious con-
flicts will emerge among the goals pursued independently by the self-aware entities.
For example, resource conflicts will not emerge if resources are relatively plentiful.
If goals do not explicitly conflict, and the actions undertaken to realize those goals
do not result in unanticipated couplings, then they may be pursued independently
without negative consequences. In such a situation, the system as a whole bene-
fits from the individual adaptive goal-driven behaviors of the individual self-aware
entities from which it is composed, as no explicit coordination is needed.

4 Learning

A defining characteristic of self-aware entities is that they learn models of them-
selves and/or the environment in which they are situated, and use these models to
reason about what actions to take so as to best realize their goals. Consider for ex-
ample the various self-aware entities that have appeared in scenarios described in
this chapter: smart appliances of various kinds, or a house power manager, or a grid
power manager. In all of these cases, and quite generally, default design-time set-
tings cannot encompass the full variability of situations in which an agent will find
itself during its lifespan. Moreover, it is often the case that system goals will only be
provided by a user at run-time, i.e. they are inherently not predictable by the system
designer – and therefore some sort of learning will be required in order to determine
a sequence of actions or behaviors that best realizes the system’s goals. Yet another
motivation for endowing self-aware entities with an ability to learn is so that they
can avoid suboptimal or unstable behaviors resulting from conflicts among actions
or goals (as described in Sections 2.2 and 3.2). In short, for many different reasons,
learning is a must.

A variety of learning mechanisms are described in detail in chapter 5.1. The pur-
pose of this section is to explore the impact that learning by multiple individual
self-aware entities may have upon the behavior of a collection of self-aware entities
that are learning models of themselves and their environments. When multiple self-
aware entities are situated within an environment, they typically interact with one
another — either directly, or indirectly through the impact their actions have upon
the environment. In effect, they form part of one another’s environment. Therefore
— for better or for worse — whether or not the entities are explicitly aware of one
another’s existence, their learning algorithms may respond to one another’s behav-
ior.

In sections 2 and 3, we considered collectives in which the entities are only lo-
cally self-aware; that is, they possess an awareness of themselves, but they either
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did not recognize or they did not otherwise account for the behavior, state, or self-
awareness of other entities in the system. In this section, we first treat learning self-
aware entities with such limited awareness of other entities, and then we extend our
treatment to agents that are aware of the existence of other self-aware entities, and
(in some cases) aware of the fact that those other self-aware entities are learning.
While it is possible in some situations to contemplate approaches that model the
entire collective as a single learning problem, we give centralized approaches very
little consideration here, as they require a global system view [4], which is typically
not available to local components. One can approximate a centralized approach in a
decentralized setting through the use of joint-action learning [5], but such techniques
require strong assumptions about the cooperative nature of the learning problem, or
observability of others’ actions.

Through a series of scenarios, we shall illustrate negative and positive global
behaviors that may occur when agents learn, both for the case where they are not
directly aware of other self-aware entities, and for the case where they are directly
aware of other self-aware entities. In either case, very interesting dynamics can be
created in systems where agents try to learn simultaneously, as they create moving
targets for one another. Several interesting questions arise in this context:

1. How do individual learning strategies of agents influence the environment in
which they are situated?

2. Conversely, how should the fact that an individual self-aware entity is a member
of a collective affect the choice of learning strategies for that entity?

3. Overall, how does the scope of awareness affect this individual-collective inter-
play?

At the end of the section, we summarize our observations regarding these phe-
nomena and the means that may be taken to ameliorate or eliminate undesirable
global behaviors, or to capitalize on the desirable ones. 2

2 It is worth noting in passing that data privacy is a very real issue in systems of self-aware learning
agents. With sufficient monitoring accuracy and long enough observation periods, accurate mod-
els of user activities can be learnt and exploited for commercial and non-commercial purposes. In
the same way search engines and social media can intrude in the private life of their users, power
utilities would be able to reconstruct their user’s life patterns and habits, their usual presence at
home and absence periods, the nature and type of their electrical appliances, their usage of these
appliances, down to very specific details such as the multimedia contents they are watching — re-
constructed via specific consumption patterns, for instance, of a TV set playing a particular movie.
Therefore, the question of the scope of learning — which agents learn about which others and
under which conditions – and of the dissemination of the produced knowledge is becoming a criti-
cal privacy and security matter. This privacy risk related to the development of self-aware systems
must be understood from the earliest design phases. However, as this chapter is concerned with
dynamical behaviors, we shall not pursue these important issues further here.
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4.1 Scenarios

For our learning scenarios, we extend the smart home scenarios of sections 2 and 3
at three levels: smart appliances, smart homes, and multiple smart homes connected
to a smart grid.

4.1.1 Smart appliances

Here we extend the smart appliance scenarios of sections 2 and 3 to include learning,
and explore some issues that may result.

Consider a set of smart appliances operating within a smart home, which may
include thermostats and windows in each room, an oven, a dishwasher, and one
or more batteries. Each entity is equipped with algorithms and compute resources
required for building long-term models. Depending upon the nature of the learning
algorithms and the availability of data, such models may range from very elementary
to very sophisticated in terms of their complexity and predictive power. For example,
a smart thermostat might attempt to learn the temperature preferences and habits of
the human occupants of the rooms (perhaps even keyed to each individual). It might
further try to learn mappings between the external temperature and the time and
effort needed to cool or heat the room. It might even try to augment its models of
external temperature by contacting a service to obtain weather forecasts.

The other appliances could exhibit the same broad range in modeling sophistica-
tion and awareness of one another’s existence and capacity for adapting and learn-
ing. A smart dishwasher might learn the consumption patterns of other appliances
and schedule its own washing cycles at times when the house’s total consumption is
expected to be low; a smart battery might learn and anticipate dynamic price vari-
ations on energy markets to schedule its load phases to times when prices are low
and unload phases when prices are high.

There is also a wide variation in the degree to which the appliances could be
aware of one another’s existence, and might attempt to develop models of one an-
other’s behavior or intent. For example, a smart thermostat that is aware of the ex-
istence of other thermostats in other rooms might incorporate into its model the fact
that the temperature of the room it is controlling will be affected by not just the
external temperature, but also the temperature of neighboring rooms in the house.
Given this realization, it would be sensible for the smart thermostat to request from
the other thermostats current temperature readings from nearby rooms. Such infor-
mation would be useful for both adjusting the demands the smart thermostat places
upon the heating or cooling system, but also as data that could be used to adapt
its model of how the room temperature depends on the external temperature, the
temperatures of nearby rooms, and the heating or cooling effort that it demands.
Suppose further that the thermostat is aware of the other thermostats, not just as
entities capable of reporting temperature, but as controllers of temperature. Then it
might request not just the current temperature, but also the anticipated demand that
the other thermostats intend to place on the house’s cooling or heating system.
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An even more sophisticated thermostat might try to learn the models employed
by the other thermostats by associating reported temperatures with reported heating
or cooling demand, and use this information to anticipate how the other thermostats
might respond to its own actions. A yet more sophisticated thermostat might un-
derstand that the other thermostats are themselves adaptive and therefore take into
account that the models they employ are potentially dynamic. The thermostat might
even take into account that its own adaptivity might be anticipated by other ther-
mostats that possess a similarly high scope of awareness, and indeed this can in
principle be taken to an infinite level of regress: “I know that A and B know that I
know that they know that I know that .... they adapt and learn.”

Self-aware entities that learn are potentially vulnerable to all of the potential
pitfalls that have been described in sections 2 and 3. For example, the aggregate
demand that thermostats, window controllers, smart ovens, smart dishwashers, and
smart batteries place upon electricity consumption may exceed a limit imposed by
the user or the utility company, resulting in the resource conflict described in sec-
tion 3. All of the same mitigations described in section 3.2 may apply. Of particular
relevance is the mitigation strategy according to which entities are endowed with
an awareness of other entities and an ability to predict their behavior, as behavior
prediction could be based upon a learned model. Another particularly relevant mit-
igation strategy is the one that introduces a resource broker. In the case of a smart
home, the resource broker could be a power usage scheduler that takes into account
power requests from the various self-aware entities (which are derived from user
preferences) and performs some sort of optimization to determine how much and
when each appliance may consume power.

Consider what might happen under such circumstances when one or more of the
smart appliances has the capacity to learn about the typical daily power consumption
profile and reschedule their consumption during low-consumption periods. A typical
domestic consumption profile might exhibit peaks in the morning when residents
wake up and start their activities, at lunch time, and primarily at night when domestic
appliances are used intensively for utilitarian or recreational purposes. In principle,
this could enable the smart appliance to optimize its use of power, and if many or all
of the smart appliances learn then the home as a whole could operate very efficiently.

However, one can also contemplate scenarios in which learning by one or more
smart appliances has undesirable consequences. To take a specific example, the dish-
washer agent might well discover through (via reinforcement learning, for example)
that its performance is optimized when it over-reports its consumption needs to a
house manager that allocates electric power to the various appliances. Other appli-
ances that are more honest about their electricity needs may suffer, and so may the
inhabitants too if they find that the dishes are always washed whenever they want,
but the room temperature is often too hot or too cold, and the oven is hardly ever
cleaned. In other words, an imbalance in which a single smart appliance learns to
optimize its own performance may end up violating global objectives that express
tradeoffs among tasks performed by the various appliances. Suppose further that
one or more smart thermostats and a smart self-cleaning oven also learn that over-
reporting their demands secures enough power for them to optimize their perfor-
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mance. Then these and the other appliances will benefit at the expense of others that
do not learn — just so long as their total demand for power does not exceed the limit.
However, if all of the appliances learn to over-report their demands — or enough
do so that the aggregated demand for power exceeds the limit — then it is easy to
imagine that a disastrous form of co-evolutionary learning [32] could occur. As each
appliance ratchets up its resource estimate in an effort to grab more resource for it-
self, the other appliances must do so as well, resulting in a never-ending arms race;
a destructive feedback loop that makes it impossible for the house’s power man-
ager to really know the actual resource requirements. Under such circumstances,
the house’s power manager might itself learn that the appliances are all lying to
it, and try to develop its own models of their actual needs based upon their record
of actual consumption — and in effect become a central controller that largely or
completely ignores the requests made to it by the smart appliances.

Note that the arms race described above could happen without the appliances be-
ing aware of one anothers’ existence; they would merely be adjusting their actions
to maximize their own reward. Now consider what might happen if self-aware enti-
ties were to become aware of one another’s existence, without trying to deliberately
model one anothers’ behavior. A scenario such as this was explored by Kephart and
Tesauro [29] in the context of two selling agents (pricebots) that use Q-learning
to learn pricing policies that govern the price they should charge for a commod-
ity as a function of the price charged by the other selling agent. The policies did
not embody a prediction of the other agent’s price; it merely expressed the price
that a seller should charge given the other’s observed price. The dynamics in this
case were surprising. Under some conditions, the pricing policies converged to a
well-defined symmetric pair. Under other conditions, they appeared to converge to
an asymmetric pair of pricing policies, but when viewed at long time scales these
policies proved to be unstable — shifting abruptly to a new pair of policies. One
can imagine similar behaviors being exhibited by smart appliances that formulate
policies governing how much resource to demand as a function of how much has
been requested by other appliances.

Now consider the case where agents do attempt to model one anothers’ behav-
iors [4]. They could do this by observing one anothers’ actions, often in response to
their own. In some cases, tagging agents according to their type or their membership
in a social group may help, as it enables agents to cluster observations about other
agents and thereby potentially reduce the time required to learn models of other
agents’ behavior. Being able to simulate the likely actions of other agents in the
system has the potential to let agents anticipate and potentially avoid oscillations or
other unfortunate dynamical collective behaviors. For example, the symmetric price
policies learned by the two competing Q-learning pricebots studied by Kephart and
Tesauro [29] resulted in pricing dynamics with much shorter (and higher-priced)
price war cycles than the naı̈ve policy achieved without learning, resulting in a
higher profit for both sellers. As another example, Kephart et al. [27, 23] studied
computational ecosystems into which some agents were “smart”, i.e. they were en-
dowed with the ability to predict the resource consumption decisions of other agents.
Such predictive capabilities could be based upon reinforcement or other forms of
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learning. The smart agents experienced gains in utility for themselves, and even
sometimes for the agents whose behavior they were predicting. However, when too
many of the agents in the system became smart, the system dynamics changed in
such a way that the smart agents could no longer predict them, and the resource
usage of the system became highly unstable and inefficient.

The field of game theory provides another family of techniques that self-aware
entities may use to learn the behavior of other self-aware entities. In fictitious play,
agents use the historical frequency of actions taken by other agents as a model for
their behavior, and play their best (possibly randomized) strategy against that dis-
tribution. Detailed descriptions of NIR and NER and algorithms that exhibit these
properties can be found in many references [10, 21]; the basic idea is to use the ob-
served frequency of other agents’ actions to converge to a policy (a mapping from
an opponent’s action to an agent’s response to that action) that minimizes the re-
gret that one would feel in hindsight. Depending on the details of the game (the
payoffs received by the agents under all possible joint actions), and the details of
the learning algorithms, the policies of the players may evolve to various forms of
game-theoretic equilibria, such as a Nash equilibrium or correlated equilibria. How-
ever, convergence to an equilibrium is not guaranteed. Jafari and Greenwald [21]
observed that in the game of “rock, paper, scissors”, two agents that both use a no-
regret learning algorithm introduced by Hart and Mas-Colell [19] cycle indefinitely
among the various strategies of “rock”, “paper” and “scissors”, and yet interestingly
the frequency of their play averaged over time does achieve the Nash equilibrium, in
which each strategy is played 1/3 of the time. A similar phenomenon was observed
by Greenwald and Kephart [17] who studied a probabilistic pricebot scenario in
which between two and five seller agents used NER and NIR algorithms to adapt
their pricing strategies. The seller agents did not always settle into a stable mixed
(probabilistic) strategy, but their long-term empirical frequency of play did coincide
with a Nash equilibrium. In some instances, a very long-term period of stability
would end spontaneously, and after a very brief transition period the system would
settle into a new Nash equilibrium.

An alternative, less explored approach to self-aware collective learning and adap-
tation is through the sharing and aggregating of knowledge about global state and
progress towards goals. Furthermore, collective adaptation could include adapta-
tion of the architecture of the collective itself, such as to support and optimize such
knowledge sharing. A promising direction could be to integrate self-organization
mechanisms (e.g. [9]) in order to support such knowledge sharing. Indeed, as
agents in a collective learn new architectures based on their self-awareness, so may
more suitable architectures facilitate more effective collective learning and self-
adaptation.

As a final note, it is worth pointing out that the time scale on which learning
occurs is typically a good deal slower than that on which operational decisions are
made, and actions taken. For example, the pricing policies that are learned by Q-
learning [29] or by no-regret algorithms [17] evolve on a time scale that is 3 to 6
orders of magnitude slower than the scale on which prices are reconsidered. There-
fore, while oscillations can occur both for actions and for the policies that govern
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those actions, and they may even share similar mathematical bases at some level of
abstraction, they are so different in time scale that the shifts in policy can often be
too slow to be coupled with the actions themselves.

4.1.2 Smart home

It is also worth considering one or more self-aware entities that could operate at
the level of the smart home as a whole. One such entity was already introduced in
section 4.1.1: a power manager responsible for managing the total power consump-
tion by all of the appliances and other electrical equipment in the house. One can
draw an analogy between the power manager and mitigation strategy #5 introduced
in section 3.2), which entails introducing a resource broker to stabilize systems that
are prone to spontaneous oscillation. In this analogy, the various smart appliances
could play the role of application managers that each appeal to the power man-
ager for resource. In scenarios where the smart appliances discover that they can
increase their resource allocation by exaggerating their resource needs, the power
manager might benefit from learning the mapping from an appliance’s requests to
their actual consumption. It is not clear a priori whether this practice would improve
stability and efficiency, or worsen it. Another form of learning that a power manager
might exhibit would be to learn the tradeoffs among the various functions provided
by the appliances, which could be interpreted as weights on their individual utility
functions. While one might think that such weights could be provided explicitly, in
practice it is difficult for people to provide them, and therefore the power manager
would more likely have to infer the weights from observations of human behavior.

Another key role that a power manager for the smart home would play is that
of an economic software agent that makes purchasing decisions that determine how
much power there is to divide among the smart appliances. For this purpose, the
power manager could employ various learning mechanisms to build models of the
environment in which it is situated, which includes other smart houses in the dis-
trict, the global behaviour of the city grid, and the local and regional weather. Such
models would enable the house power manager to predict consumption patterns in
the house and in the local grid with better accuracy. Of special importance in this
context would be learning mechanisms that enable the power manager to function
competently as an economic player. Each smart home’s power manager could then
be seen as one economic player among an entire economy consisting of all of the
smart homes plus the utility (smart grid). From various works on multi-agent learn-
ing in economic systems that have already been referred to in this section [29, 17],
it is clear that there is a rich set of dynamical phenomena that can be exhibited in
this context.

A few additional observations are worth making here. First, in a related scenario,
the power manager might be expanded in scope to be a smart home manager that
makes intelligent tradeoffs among power consumption, various notions of comfort,
and other attributes that matter to the home’s occupants. Second, learned models are
useful not just for making minute-by-minute decisions about resource allocation;
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they can also be valuable for making informed decisions about long-term invest-
ments, such as more energy storage capacities (batteries), local energy generators
(such as solar panels), replacing existing appliances with more efficient versions
(e.g. more energy-efficient water heaters or air conditioners or washing machines),
or even providing advice to users on their usage patterns (thereby helping the human
end user more self-aware with regard to energy consumption).

4.1.3 Smart grid

At the level of the smart grid as a whole, the self-aware entities could include myriad
smart home managers and a resource manager that represents the utility. Having al-
ready discussed in the previous scenario the issue of economic learning by the smart
home managers, it suffices here to discuss what forms of learning might be valuable
to incorporate into the utility resource manager. The utility resource manager might
benefit from learning collective generation (e.g. via solar panels) and consumption
patterns through their interactions with the smart home managers. Knowledge of
the weather, vacation times, and special events that may have a noticeable impact
on aggregate demand can help energy providers to provision their capabilities ac-
cordingly, on a day to day basis. Learning such patterns is also key to anticipating
the long-term evolution of the grid, in terms of required production and storage ca-
pabilities, and to fine-tune fair tariffs according to offer and demand. Such global
models become key economical and political decision support tools regarding the
development of grid infrastructures.

Many of the previously-cited advantages and pitfalls of learning in an environ-
ment in which other self-aware entities are simultaneously learning apply in the
smart grid context as well. One possible form of oscillation that might occur was
described in section 3.1 (see Eq. 2), in which electricity prices and consumption
fluctuate at the level of the grid as a whole. Note that this oscillation occurs in the
actions; given the observations reported above for Q-learning [29] and no-regret
algorithms [17] applied to economically-motivated software agents it may be pos-
sible to observe oscillations in the pricing policies themselves, at a much slower
time scale. Just as a smart appliance might learn to do a better job of satisfying its
individual goal by over-reporting its resource need to the smart home manager, so
might the smart home managers try to game the utility resource manager or the other
smart home managers by behaving in ways that misrepresent their true needs and
interests. In scenarios such as this, one reasonable approach is to create coordination
mechanisms that make it difficult or even impossible for smart home managers to
game the system. The design of incentive-compatible auctions (such as Vickrey or
second-price auctions [37]), which encourage bidders to honestly report their valu-
ations for a good, is motivated by such a goal.
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4.2 Mitigating undesirable collective behaviors

As has been illustrated several times in this section, learning can be both a cure
and a cause of undesirable collective behaviors in self-aware systems. Sometimes a
learning mechanism can be both at the same time — curing a problem at one level
but introducing a new problem at another, somewhat akin to the infamous efforts
of the Cat in the Hat and a succession of Little Cats to get rid of a pink bathtub
ring in the The Cat in the Hat Comes Back [13] by employing progressively more
aggressive methods that only serve to exacerbate the original problem.

In the smart appliances scenario, learning can help appliances to improve their
ability to behave in accordance with human preferences, but it can also lead to an
arms race in which each appliance tries to grab more resource for itself by over-
estimating its resource needs. The arms race can occur whether or not the appliances
are unaware of one another’s existence. This arms race bears some resemblance the
resource conflict described in section 3, resulting from constraints on shared re-
sources. An important difference is that, whereas the resource conflicts of section 3
resulted in direction actions by the contending entities to grab resource, in the case
described in this section, the actions taken to acquire more resource were more
subtle and indirect, since resource allocations were mediated through the resource
broker instead of being obtained directly from the resource. Even more importantly,
the dynamics of the system change on a slower time scale, because alterations in the
amount of resource requested from the broker are due to learning, and such learning
would typically require several resource allocation cycles.

Differences in directness and timescale notwithstanding, some of the mitigation
techniques introduced in section 3 may still be applied to learning agents. The first
two approaches (randomness and heterogeneity) are still applicable in many situa-
tions, but of course they still suffer from the drawback that, while they may stabilize
the system, the equilibrium to which they stabilize is typically suboptimal. The third
option, reducing information delays, is potentially of interest, but it is not immedi-
ately clear how to apply it in a situation where the unstable dynamics are generated
at least as much by the learning process itself as they are by the resource usage.
It is conceivable that, given that the timescale on which information propagates
through they system can profoundly affect the dynamics of that system, such slow-
ing down of the system dynamics from the timescale on which actions take place
to the timescale on which policies governing those actions evolve may help reduce
or prevent over-reactions and oscillations, but more research would be required to
determine whether or not this is the case. The fifth option, introducing a resource
broker, appears not to be available as a mitigation in the smart appliances scenario
because a resource broker has already been introduced into that scenario.

The fourth option (endowing agents with an awareness of one another, and an
ability to predict one anothers’ actions) bears more discussion, as it was also dis-
cussed as one variant of the smart appliances scenario. In the example of the Q-
learning pricebots [29], simultaneous multi-agent learning can result in action poli-
cies that converge to an equilibrium, but it can also lead to pseudo-convergence that
is punctuated by brief episodes of transition among different near-equilibria that,
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while less optimal than would be obtained by a benevolent dictator, are still prefer-
able to the case where the agents act in ignorance of one another. However, as noted
previously [27, 23], in some cases efforts to endow agents with awareness of other
agents’ behavior can succeed only if a sufficiently small proportion of agents pos-
sess this awareness. As was discussed in section 4.1.1, game-theoretic approaches
involving fictitious play or learning algorithms based upon no external regret or no
internal regret show some promise, as they can result in convergence to Nash or
other game-theoretic equilibria, at least in a time-averaged sense.

In addition to the mitigation strategies discussed in Section 3.2, another option
for avoiding or mitigating undesirable collective behaviors in systems of self-aware
learning agents is to introduce mechanisms used in economies to coordinate the ac-
tions of self-interested entities, of which auctions are a prime example. Incentive
compatible auction designs (such as Vickrey, or second-price mechanisms) [37])
have the potential to eliminate learning and resource allocation dynamics because
they encourage agents to be honest about their resource needs. Such mechanisms are
conceptually similar to the idea of using a resource broker to coordinate actions of
multiple self-aware entities, except that they are explicitly designed to handle sys-
tems of self-interested agents, whereas the resource broker concept is inherently de-
signed for cooperative systems in which agents honestly report their resource needs.
In a properly designed auction, agents are not just assumed to be honest; they are
compelled to be honest out of self-interest. Auctions are attractive in that they strike
a good balance between centralized coordination (which is essentially the joint con-
trol mitigation introduced in section 2) and independent action by self-aware agents.
The number of different auctions types available to system designers is enormous,
ranging at least into the thousands [39], and the mechanisms can become quite com-
plex when agents require multiple types of resource to accomplish their tasks (see
various works on combinatorial auctions [35]. Fortunately, there has been some re-
search on how a system designer can translate overall system goals into auction
mechanisms that best achieve them [6].

4.3 Capitalizing on desirable collective behaviors

A system consisting of self-aware entities that can adapt, learn and interact with one
another without suffering deleterious emergent effects such as those described in
section 4.1 can exhibit a number of very desirable system-level properties. One im-
portant advantage that manifests itself at both design-time and run-time is modular-
ity, and the flexibility and evolvability that stem from it. Rather than having to build
systems containing pre-determined, fixed sets of agents, and controllers designed
specifically for that fixed set, one can design each entity individually, and be con-
fident that it will settle into the system alongside the other entities that cohabit the
same environment, and discover and use the agents, services, or other resources that
it needs to satisfy its goals. These qualities enable one to build self-aware systems
and applications from self-aware components that were designed before the systems
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or appliations were conceived. At run-time, these capabilities translate into auto-
nomic [25], or self-managing capabilities such as self-configurability, self-healing,
self-optimization and self-protection.

To the extent that the various mitigations discussed in section 4.2 prevent or at
least reduce suboptimal and/or unstable collective behavior, they enable these nat-
ural desirable collective behaviors of self-aware systems to shine through. Several
examples of desirable collective phenomena were illustrated in Section 4.1 along-
side the undesirable behaviors, including evolution to Nash or other game-theoretic
equilibria (at least in a time-averaged sense) by observing other agents’ behaviors.
As stated in Section 4.2, auctions appear to show considerable process as a mech-
anism that can support favorable collective behaviors, and indeed the use of eco-
nomic mechanisms in general seems particularly appropriate and suitable for very
large-scale systems, although on the other hand simulations of price war and re-
lated behaviors in information economies suggest that economic approaches are not
a panacea [24].

5 Advanced Coordination with Mutual Awareness

Thus far in this chapter, we have considered scenarios in which adaptive entities
within the system learn, reason and act independently of one another, with vari-
ous levels of mutual awareness. In this section, we shift our focus to systems of
adaptive entities that learn, reason and/or act in an explicitly coordinated fashion.
While it is not the only rationale, one important reason for coordination is that it can
avoid or mitigate undesirable collective behaviors such as those described earlier
in this chapter. For example, recall that the following forms of coordination have
been introduced earlier in this chapter as methods for mitigating various types of
undesirable collective behavior in adaptive systems:

• Technique 1 (Joint Control), which was suggested in Section 2.2 as a means
for mitigating the problem of independent controllers taking actions that waste
resources and thwart attainment of individual goals;

• Technique 5 (Resource Broker), which was suggested in Section 3.2 as a means
for mitigating spontaneous oscillations that migh arise from constraints on shared
resources; and

• Auctions and other economic mechanisms, which were suggested in Section 4.2
as a means for migitating undesirable collective behaviors in systems of self-
aware learning agents.

This section is organized as follows. First, we illustrate various forms of coordi-
nation and resultant collective adaptive behaviors through two scenarios: extensions
of the familiar smart home and power grid scenario, and the autonomous shuttle
scenario of Chapter 1.5, which exemplifies large-scale but inherently cooperative
adaptive systems. Then, in the second and final subsection, we discuss the pros and
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cons of these various techniques for achieving system-level adaptation through co-
ordination.

5.1 Scenarios

5.1.1 Smart home and smart grid

Consider variants of the smart home and power grid scenario in which the entities
comprising the system explicitly coordinate with one another [12, 11].

At the level of smart appliances within a single home, appliances (such as a smart
window and thermostat) might coordinate their actions with one another through a
variety of means. They could submit information about their goals (and perhaps
their state) to a central authority such as a joint controller to act on their behalf (as
in Technique 1 of Section 2.2). Another approach is for them to communicate their
resource needs to a resource broker (Technique 5 of Section 3.2) and the resource
broker could then provide either an instantaneous power allocation or a power al-
location schedule to each appliance. A third approach that avoids a central author-
ity is for the entities to exchange information regarding their proposed actions and
perhaps their goals to one another, and to engage in some sort of bilateral or multi-
lateral negotiation [18] to determine which actions (e.g. window opening times and
thermostat heating periods that maximise their respective efficiencies while min-
imising negative impacts (for instance, avoiding the window to open during cold
weather while the heater is just beginning a heating cycle). In the same vein, the
smart oven and dishwasher – and other electrical appliances – can use coordination
in one form or another to implement a sophisticated scheduling algorithm taking
into account complex constraints on their respective schedules (the dishes have to
be cleaned before deadline D, and the oven must run its cleaning cycle for M min-
utes during the evening, considering that the 7pm-9pm slot is reserved for potential
cooking on the stove, etc.). When trade-offs are necessary – for instance, heating
must be reduced so as not to exceed a power consumption limit – minimal sacrifices
(such as letting the temperature drop more in the living room and the study) can be
identified and chosen.

Laws and social norms that encourage or restrict certain types of individual be-
havior constitute another type of coordination mechanism that can enable a col-
lective to adapt in ways that promote the goals of the collective as a whole. The
deviation of Nash equilibria from solutions that maximize societal welfare is a well-
known phenomenon in game theory, exhibited in the well-known Tragedy of the
Commons /citeHardin1968 (in which villagers are compelled through self-interest
to overgraze the commons even though they know it will hurt the whole village)
and the Prisoner’s Dilemma /citeAxelrod1984. If the villagers in the Tragedy of
the Commons scenario were governed by a central authority, that authority could
compute a societally better plan, such as rationing the commons equitably among
villagers. Similarly, if the prisoners in the Prisoner’s Dilemma were permitted to
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communicate with one another, they could each compute the joint action that maxi-
mizes their joint welfare and negotiate an agreement whereby each will execute their
contribution to that optimal joint action (which in this case is for both to cooperate).
Of course, for this to work they would have to be subject to some authority that
either forces or strongly encourages them to hold to their agreement. In the smart
home scenario, norms governing power consumption scheduling could resolve re-
source contention by giving essential appliances (e.g. medical ones) priority over
less important ones used for cooking or entertainment. These norms could either be
built into the appliances, or they could be enforced by a smart home controller or
resource broker.

At the level of the power grid as a whole, smart home managers might use other
coordination mechanisms to determine power allocations for individual homes.
Since the situation is inherently competitive across different homes, the joint control
method of section 2.2 is not appropriate, nor is the Resource Broker as described in
section 3.2, as it requires that entities communicate their true goals (in the form
of utility functions) to the resource broker. On the other hand, auctions and related
market mechanisms (which were introduced in Section 4.2), are inherently suited
to competitive situations. For example, suppose house A has planned visitors for
the night and expects higher than usual consumption levels. A bid to reserve extra
power that night could be placed in a local energy market, and matched by a bid to
provide power by another house B that has stored extra energy in its smart battery
by collecting solar power during the day. Note that communicating bids to a central
auctioneer is analogous to sharing utility functions with a Resource Broker, except
that the former approach reveals far less information to competitors. Various forms
of negotiation are also appropriate in competitive scenarios such as this.

Might social norms also work at the scale of a power grid? Possibly. For example,
in a mutual-assistance smart city, some neighbourhoods may adopt norm-oriented
solutions to deal with the unpredictability of power production and consumption at
a local level and over the long term. Smart houses could agree to offer overproduc-
tion to houses that lack power resources at a certain instant, in return for having the
favour returned to them in the future, when the situation may be inverted. Such be-
haviour could be regulated based on mutually-agreed norms, negotiated and updated
as needed by the smart houses and/or the users [8]. For instance, participants might
agree to only share power when do not intend to use it, or to share overproduction
whenever they do not need it for critical tasks. The agents can achieve advanced
coordination by specifying and adapting the norms (as in the cited example), in an
alternative to market-oriented approaches.

At the largest scales, however, it seems doubtful that social norms could sup-
port collective adaptation — but laws certainly could. For example, in the event of
an energy shortage, it may be deemed more important for society as a whole to
keep hospitals running at the expense of office buildings or sports stadiums. Laws
enforcing such prioritization could be implemented by local governments, and en-
forced either in smart devices that control power allocation, or through the more
standard practice of threatening legal action againstd violators.
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5.1.2 Autonomous shuttle fleet

The autonomous shuttles scenario introduced in Chapter 1.5 exemplifies a large-
scale, inherently cooperative system. In such a situation, coordination mechanisms
may be introduced to improve the system’s ability to learn, reason, or act.

For example, imagine that the individual shuttles within a fleet each sense as-
pects of their environment (such as track conditions [3] or traffic conditions) or
themselves (such as the number of passengers who embarked or disembarked at
each stop, or the remaining battery power), and share their measurements with other
shuttles (which could be accomplished via peer-to-peer messages or through a cen-
tral hub or authority). Sharing such information enables each member of the fleet
(or a central authority acting on their behalf) to operate upon more accurate and
up-to-date knowledge of system state, and to learn more accurate models of system
behavior (cf. [14]).

Members of the fleet might also share with one another their goals (e.g. deadlines
or schedules). Based upon this shared information, a central authority could com-
pute an itinerary that optimizes some combination of energy and scheduling goals
and constraints (such as avoiding collisions) [2, 15]. This could be thought of as an
instance of the Joint Control method of section 2.2 or the Resource Broker method of
section 3.2. In addition to avoiding the problems of resource contention and sponta-
neous oscillation to which systems of uncoordinated and mutually unaware entities
are vulnerable, these and other forms of coordination can avoid problems that arise
in systems of entities that possess a high degree of mutual awareness, but whose
individual incentives compel them to behave in ways that hurt the collective.

As an inherently cooperative systems, social norms are more likely to be an ef-
fective means for coordination than in large-scale competitive scenarios such as the
power grid scenario above. For example, a protocol that clearly defines which shut-
tle has the right of way if two meet at an intersection promotes the societal goal of
safe, collision-free operation by the shuttle fleet as a whole.

5.2 Coordinated vs. distributed adaptation

Much of this chapter has been devoted to cataloging collective behaviors that may
ensue when individual entities adapt without awareness of or consideration for ac-
tions or goals of other adaptive entities within the system. We have outlined various
approaches that can under some circumstances mitigate the more harmful of these
collective behaviors. The coordination mechanisms discussed in this section are all
designed to avoid these problems by enabling some forms of global computation to
be performed over the entire collective – either actively by a central agency such
as a joint controller or resource broker, or at design time by a government or other
entity that has the power to enforce norms or laws that are calculated to encourage
or enforce individual behaviors that will lead to a desired collective result.
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Nonetheless, one should not conclude that coordination mechanisms that en-
able global computation are preferred universally over more distributed approaches.
While centralized approaches may be attractive in principle because they offer the
possibility of computing a social optimum, in practice they may suffer from the
drawback that they require global knowledge, and (perhaps even worse) computa-
tional resources that may scale superlinearly with the number of entities or other
variables over which they must compute a solution. Computing a globally optimal
solution may be impractical at sufficiently large scale. If the computation involves a
game-theoretic calculation, for example, the compute resources required can grow
astronomically with the number of players and strategies.3

Fortunately, fully-distributed and fully-centralized approaches to adaptation and
control are just two ends of a spectrum. Hierarchical control, in which local con-
trollers operate within a scope that is defined by a higher-level controller (typically
at a slower time scale) is often a successful approach. For example, Raghavendra et
al. showed that a multi-level hierarchy of controllers using a variety of control tech-
niques at different levels can be effective for data center power management [34].

Moreover, it is worth noting that one could adapt the overall method of adapta-
tion itself in response to observed behavior. In other words, one could contemplate
an optimistic approach to designing a adaptive system in which decentralization
is attempted, but in which the individual entities are endowed with the ability to
monitor their own behavior and perhaps that of their neighbors for signatures of
undesirable emergent behaviors. A technique of this nature was employed by Heo
and Abdelzaher in their work on coupled feedback control systems [20]. One could
even introduce into the system special-purpose watchdog entities that contain sig-
natures of undesirable behaviors. When such signatures are detected, the entities
could send their observations to a central authority, or exchange those observations
among themselves to determine that they are suffering from a known type of collec-
tive behavior. Upon such a determination, the system could introduce into itself an
appropriate mitigation, such as one of those described in this chapter.

6 Discussion and Summary

Characterizing the vast universe of possible systems of interacting self-aware enti-
ties is a daunting task. Rather than attempting a full taxonomy in this chapter, we
have mentioned a few non-orthogonal dimensions of that space (borrowing from
nomenclature introduced in Chapter 2.2. where possible) and sampled it rather
sparsely with a set of scenarios, many of which are extensions of the reference
scenarios in Chapter 1.5. In order to achieve some measure of coherency, this chap-
ter has been organized broadly according to collections of scenarios that share a
common characteristic. However, it should be acknowledged that other groupings
that emphasized different dimensions of the space might have been equally coher-

3 More precisely, computing Nash equilibria has been shown to be PPAD-complete, where PPAD
is a subclass of NP that contains problems that are suspected of being hard. [7].
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ent, such as arranging them according to the degree of awareness that the self-aware
entities have of one another’s existence, actions or goals.

Looking across all of the scenarios covered in this chapter, the many forms of
collective behavior exhibited by the system described in those scenarios, and the
many approaches proffered for suppressing or fostering these behaviors, we draw
some general observations:

• For many reasons, including scalability and evolvability, it is generally desirable
to design self-aware systems as collections of adaptive, learning self-aware en-
tities that govern their own actions. While designing joint controllers to manage
two or more functions (e.g. smart windows and smart thermostats) can help at-
tain optimality and stability, it is very constraining to try to anticipate all possible
pairs or n-way combinations of functions that might be found together in a sys-
tem.

• Conflicts among self-aware entities can arise under a wide variety of circum-
stances:

– The most obvious case is where the goals explicitly conflict; in such a case
the user must somehow clarify how that conflict is to be resolved via a policy
or precedence rule, utility function, or other mechanism.

– Even when goals do not conflict directly, actions guided by goals of different
self-aware entities may conflict. One common cause of conflict is contention
for a commonly-needed resource. Another is via unintended side-effects that
end up coupling the actions of self-aware entities in unanticipated ways

– The self-aware entities may conflict with one another directly, or indirectly
through their impact on the environment in which they are situated.

• In the common situation where more than one of the self-aware entities learns,
each learning agent potentially creates a dynamic environment for other agents,
and that dynamism creates a need for all self-aware entities to continue learning,
further perpetuating the dynamicity of the system. Thus convergence to stable
behavior may be inherently difficult in such systems.

• While many different methods can be used to thwart undesirable collective phe-
nomena, at a sufficient level of abstraction some common themes emerge:

– Introducing randomness or heterogeneity where possible.
– Reducing information delays where possible.
– Engineering individual goals to achieve desired collective behavior (this may

be difficult and somewhat against the objective of developing self-aware enti-
ties as individual agents that are not necessarily explicitly coordinated)

– Detecting and breaking feedback loops
– Endowing agents with an awareness of one another’s existence, behavior, im-

pact and/or models
– Introducing an intermediary such as a resource broker or an auction or other

economic/market mechanism (thereby providing a small amount of central-
ization, or at least localization)
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• Conflicts and instabilities that result from learning can bear a mathematical re-
semblance to conflicts and instabilities that occur among agents that are merely
adaptive or reactive (but which don’t learn). However, the instabilities tend to
originate in the realm of policies that govern actions, as opposed to the actions
themselves, and thereafter the instabilities can occur on a much longer time scale
than for non-learning agents.

• Some mitigation strategies entail learning, and yet learning can itself induce in-
stabilities or suboptimal behavior.

• While economic mechanisms such as auctions show promise as general mecha-
nisms for decentralized management of self-aware systems, they too can suffer
from instabilities

Elaborating on the last point somewhat, it is apparent that there is no one panacea.
A thread through this chapter has been to better illustrate the advantages of self-
awareness and demonstrate mitigation strategies that often relied on information
sharing, communication, or learning. It remains to observe that the very mecha-
nisms that improve awareness and help with mitigation often also reduce robustness
in the presence of failures. The intuitive high-level reason for this conflict lies in the
extent of dependencies. Attaining awareness in a multi-agent system often requires
one component or agent to receive information (e.g., measurements or state) from
another. The receiving component then uses this information in its own algorithms
and/or reasoning. This exchange creates a dependency of algorithms in one com-
ponent on information arriving from another. In turn, this depedendency acts as a
conduit for failure propagation. When a component fails, those that depend on its
outputs may fail as well. The more extensive the web of dependencies, the larger
the global fallout from local failures. In the absence of dependencies, components
can fail independently without impacting the rest of the system. Hence, in designing
adaptive and collectively self-aware systems, it becomes imperative to understand
the implications of information exchange (needed to support adapive behavior and
collective awareness) on robustness. Care should be taken not to create information
dependencies or functional dependencies that give rise to failure cascades, whereby
local component malfunctions propagate along dependency chains to disrupt oper-
ation of large chunks of the system.
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