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ABSTRACT
Probabilistic software analysis aims at quantifying the probability
of a target event occurring during the execution of a program pro-
cessing uncertain incoming data or written itself using probabilis-
tic programming constructs. Recent techniques combine symbolic
execution with model counting or solution space quantification
methods to obtain accurate estimates of the occurrence probability
of rare target events, such as failures in a mission-critical system.
However, they face several scalability and applicability limitations
when analyzing software processing with high-dimensional and
correlated multivariate input distributions.

In this paper, we present SYMbolic Parallel Adaptive Importance
Sampling (SYMPAIS), a new inference method tailored to analyze
path conditions generated from the symbolic execution of programs
with high-dimensional, correlated input distributions. SYMPAIS
combines results from importance sampling and constraint solving
to produce accurate estimates of the satisfaction probability for
a broad class of constraints that cannot be analyzed by current
solution space quantification methods. We demonstrate SYMPAIS’s
generality and performance compared with state-of-the-art alter-
natives on a set of problems from different application domains.

CCS CONCEPTS
• Mathematics of computing → Metropolis-Hastings algo-
rithm; • Software and its engineering → Software verifica-
tion and validation.

KEYWORDS
symbolic execution, probabilistic analysis, probabilistic program-
ming, importance sampling, Markov chain Monte Carlo

1 INTRODUCTION
Probabilistic software analysis methods extend classic static analy-
sis techniques to consider the effects of probabilistic uncertainty,
whether explicitly embedded within the code – as in probabilistic
programs – or externalized in a probabilistic input distribution [12].
Analogously to their classic counterparts, these analyses aim at
inferring the probability of a target event to occur during execution,
e.g. reaching a program state or triggering an exception.

For the probabilistic analysis of programs written in a general-
purpose programming language, probabilistic symbolic execution
(PSE) [14, 17, 24] exploits established symbolic execution engines
for the language – e.g. [7, 33] – to extract constraints on proba-
bilistic input or program variables that lead to the occurrence of
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the target event. The probability of satisfying any such constraints
is then computed via model counting [2, 14] or inferred via solu-
tion space quantification methods [3, 4], depending on the types
of the variable and the characteristic of the constraints, and the
probability distributions. Variations of PSE include incomplete anal-
yses inferring probability bounds from a finite sample of program
paths executed symbolically [15], methods for non-deterministic
programs [24] and data structures [13], with applications to reliabil-
ity [14], security [34], and performance analysis [9]. While PSE can
solve more general inference problem, the overhead of symbolic ex-
ecution is typically justified when the probability of the target event
is very low (rare event) or high accuracy standards are required, e.g.
for the certification purposes of safety-critical systems.

A core element of PSE is to compute the probability of certain
variables satisfying a constraint under the given input probability
distribution. In this paper, we focus on estimating the probability
of satisfying numerical constraints over floating-point variables.
For limited classes of constraints and input distributions, analytical
solutions or numerical integration can be computed [6, 16]. How-
ever, these methods become inapplicable for more complex classes
of constraints or intractable for high-dimensional problems.

Monte Carlo methods provide a more general and scalable al-
ternative for these estimation problems. These methods estimate
the probability of constraint satisfaction by drawing samples from
the input distribution and estimating the satisfaction probability as
the ratio of samples that satisfy the constraints. Nonetheless, while
theoretically insensitive to the dimensionality of problems, care
must be taken to apply direct Monte Carlo methods in quantifying
the probability of rare events, i.e., when the probability of satisfying
required constraints is extremely small.

To improve the accuracy of the estimation in the presence of
low satisfaction probability, recent work [3, 4] uses interval con-
straint propagation and branch-and-bound techniques to partition
the input domain of a program into sub-regions that contain only,
no, or in part solutions to a constraint. This step analytically elimi-
nates uncertainty about the regions containing only or no solutions,
requiring estimation to be performed only for the remaining re-
gions. The local estimates computed within these regions are then
composed using a stratified sampling scheme: the probability mass
from the input distribution enclosed within each region serves as
the weight of the local estimate, effectively bounding the uncer-
tainty that it propagates through the composition. However, the
performance of this method degrades exponentially with the di-
mensionality of the input domain, and it requires an analytical form
for the cumulative distribution function of the input distribution to
compute the probability mass enclosed within each region. Since

https://orcid.org/0000-0003-0547-411X
https://orcid.org/0000-0001-9646-646X
https://orcid.org/0000-0002-3103-5535


Yicheng Luo, Antonio Filieri, and Yuan Zhou

the cumulative distribution function of most correlated distribu-
tions is not expressible in analytical form, the numerical programs
that can be currently analyzed with PSE are restricted to those
with independent inputs. In this paper, we propose SYMbolic Par-
allel Adaptive Importance Sampling (SYMPAIS), a new inference
method for the estimation of the satisfaction probability of numeri-
cal constraints that exploits adaptive importance sampling to allow
the analysis of programs processing high-dimensional, correlated
inputs. SYMPAIS does not require the computability of the input
cumulative density functions, overcoming the limitations of cur-
rent state-of-the-art alternatives relying on strati�ed sampling. We
further incorporate results from constraint solving and interval
constraint propagation to optimize the accuracy and convergence
rate of the inference process, allowing it to scale to handle higher-
dimensional and more general input distributions. We implemented
SYMPAIS in a Python prototype and evaluated its performance on
a set of benchmark problems from di�erent domains.

2 BACKGROUND
This section recalls program analysis and mathematical results
required to ground our contribution and details the limitations of
the state of the art we aim to tackle.

2.1 Probabilistic Symbolic Execution
Probabilistic symbolic execution (PSE) [17] is a static analysis tech-
nique aiming at quantifying the probability of a target event occur-
ring during execution. It uses a symbolic execution engine to extract
conditions on the values of inputs or speci�ed random variables
that lead to the occurrence of the target event. It then computes the
probability of such constraints being satis�ed given a probability
distribution over the inputs or speci�ed random variables. These
constraints are calledpath conditionsbecause they uniquely identify
the execution path induced by an input satisfying them [22].

Consider the simpli�ed example in Listing 1, adapted from [4]
using a Java-like syntax and hypothetical random distributions
for the input variables. The snippet represents part of the safety
controller for a �ying vehicle whose purpose is to detect environ-
mental conditions � excessive altitude or collision distance of an
obstacle � that may compromise the crew's safety and call for a
supervisor's intervention. The purpose of the analysis is to esti-
mate the probability of invokingcallSupervisor at any point
in the code. Safety-critical applications may require this proba-
bility to be very small (e.g. Ÿ 10� 7) and to be estimated with
high accuracy. The symbolic execution of the snippet, where ran-
dom variables are marked as symbolic, would return the follow-
ing two path conditions (PCs), corresponding to the possible in-
vocations ofcallSupervisor : %�0: altitude ¡ 9000; and%�1:
altitude � 9000̂ pow¹obstacle_x •2º ¸ pow¹obstacle_y º � 1.

1 // Probabi l ist ic profi le
2 alt i tude ::= Gaussian (8000 , 100) ;
3 obstacle_x , obstacle_y ::= Gaussian (
4 [ -2 , -2] ,
5 [[0.2 , 0.1] , [0.1 , 0.2]]) ;
6 // Program
7 if ( alt i tude <= 9000) { ...
8 if (Math .pow(obstacle_x , 2) +
9 Math .pow(obstacle_y , 2) <= 1) {

10 cal lSupervisor () ;
11 ...}
12 } else { cal lSupervisor () ; }

Listing 1: Example code snippet for an example safety
monitor of an autopilot navigation system.

The probability of satisfying a path condition%� can be com-
puted based on the distributions assigned to the symbolic variables
as in Equation (2) (for simplicity, in the remainder of the paper we
assume a probability distribution is speci�ed for every symbolic
variable or vector of symbolic variables):

?%� := Pr¹Gj= %�º =
¹

x
1%� ¹xº?¹xº3x (1)

�
1
#

#Õ

8=1

1%� ¹x ¹8ºº =: ?̂�"� • wherex ¹8º � ?¹xº (2)

where1%� ¹xº denotes the indicator function, which returns 1 if
x j= %�, that is x satis�es %�, and 0 otherwise. For clarity, we
will use �?¹xº to denote the truncated distribution satisfying the
constraints,i.e., , �?¹xº := 1%� ¹xº?¹xº.

Because analytical solutions to the integral are in general in-
tractable or infeasible, Monte Carlo methods are used to approxi-
mate?%� , as formalized in Equation(1). When the samplesx ¹8º are
generated independently from their distribution?¹xº, Equation(2)
describes adirect Monte Carlo (DMC)integration (also referred to as
hit-or-miss), which is an unbiased estimate of the desired probability
and its variancê?�"� ¹1� ?̂�"� º•# is a measure of the estimator
convergence, which can be used to compute a probabilistic accu-
racy bound � i.e., the probability of the estimate deviating from
the actual (unknown) probability by more than a positive accuracy
n ¡ 0 [39].

Since the path conditions are disjoint [22] (i.e., x j= %�8 ^ x j=
%�9 ) 8 = 9), an unbiased estimator for the probability of the
target event to occur through any execution path iŝ?%� =

Í
8?̂%�8

over all the%�8 reaching the target event.
Specialized model counting or solution space quanti�cation

methods to solve the integral in Equation(2)for PSE application
have been proposed for linear integer constraints [14], arbitrary
numerical constraints [3, 4], string constraints [2], bounded data
structures [13]. In this work, we focus on the probabilistic analysis
of program processing numerical random variables.

2.2 Compositional Solution Space
Quanti�cation

Borges et al. [4] proposed a compositional Monte Carlo method to
estimate the probability of satisfying a path condition over nonlin-
ear numerical constraints with arbitrary small estimation variance
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� we will refer to this method asqCoral. The integrand function
in Equation(2) is an indicator function returning1 for variable
assignments satisfying a path condition%�, and0 otherwise. Such
function is typically ill-conditioned for standard quadrature meth-
ods [35] and may su�er from the curse of dimensionality when
the number of symbolic variables grows; the ill-conditioning and
discontinuities of the integrand may also lead to high-variance for
Monte Carlo estimators, and particular care should be placed when
dealing with low-probability constraints.qCoral combines insights
from program analysis, interval constraint propagation, and strati-
�ed sampling to mitigate the complexity of the integration problem
and reduce the variance of its estimates.
Constraint Slicing and Compositionality. As already recalled,
the path conditions of a program are mutually exclusive. Therefore
the probability estimates of a set of path conditions leading to a
target event can be added algebraically � the mean of the sum being
the sum of the means, while the variance of the sum can be bounded
from the variance of the individual summands [4]. A second level
of compositionality is achieved in qCoral within individual path
conditions viaconstraint slicing. A path condition is the conjunction
of atomic constraints on the symbolic variables. Two variables
depend directly on each other if they appear in an atomic constraint.
The re�exive and transitive closure of this dependency relation
induces a partition of the atomic constraints that groups together
all and only the constraints predicating on (transitively) dependent
variables [14].

Because each group of independent constraints predicate on a
separate subset of the program variables, its satisfaction probability
can be estimated independently from the other groups. The satis-
faction probability of the path conditions is then computed using
the product rule to compose the estimates of each independent
group [40]. Besides enabling independent estimation processes to
run in parallel, constraint slicing can potentially reduce a high-
dimensional integration to the composition of low-dimensional
ones � on independent subsets of the symbolic variables, in turn
leading to shorter estimation time and higher accuracy for a �xed
sampling budget [4].
Interval Constraint Propagation and Strati�ed Sampling. To
further reduce the variance of the probability estimates of each
independent constraint,qCoral uses interval constraint propaga-
tion and branch-and-bound methods [19] to �nd a disjoint union
of n-dimensional boxesthat reliably encloses all the solutions of a
constraint � where= is the number of variables in the constraint.
Regions of the input domain outside the boxes are guaranteed to
contain no solutions of the constraint (1 � ¹�º = 0). A box is classi-
�ed as either aninner box, which contains only solutions, or an
outer box, which may contain both solutions and non-solutions.
Boxes are formally the conjunction of interval constraints bound-
ing each of the= variables between a lower and an upper bound:Ó=

8=0 ;18 � G8 � D18.
Because the boxes are disjoint, the probabilities of satisfying a

constraint� from values sampled from each box can be composed
via strati�ed samplingas the weighted sum of the local estimates,
weighted by the cumulative probability mass enclosed within the
corresponding box [32]. However, since the inner boxes contain
only solutions, the probability of satisfying� from values sampled
from an inner box is always 1 � no actual sampling required and,

consequently, no estimation variance to propagate. Sampling and
variance propagation is instead required only for the outer boxes,
as per Equation (3):

�G� =
j$ jÕ

8=1

?¹$ 8º �G� ^ $ 8 ¸
j� jÕ

9=1

?¹�8º• �E� =
j$ jÕ

8=1

?¹$ 8º2�E� ^ $ 8• (3)

where$ and� are the sets of outer and inner boxes, respectively.
?¹�º is the cumulative probability mass in a box, and�G2 and �E2
represent the mean and variance of the direct Monte Carlo estimates
for constraint2. For independent input variables (as assumed in
qCoral), the cumulative probability mass enclosed in a box is the
product ofCDF¹D18º � CDF¹;18º for all the variablesG8 de�ning
the box. Sampling from within a box is possible if the distribution
of a variableG8 can be truncated within the interval»;18•D18¼.

Figure 1: Left: solution space of G2 ¸ ~2 � 1. Right: inner and
outer boxes produced by RealPaver, in pink and gray, respec-
tively.

Strati�ed sampling with interval constraint propagation can lead
to a signi�cant variance reduction in the aggregated estimate by
reducing the uncertainty only to the regions of the domain enclosed
within the outer boxes, potentially avoiding sampling from large
regions of the domain that can be analytically determined as includ-
ing only or no solutions. Because boxes can be iteratively re�ned
up to arbitrary accuracy, there is a trade-o� between the target size
(and, consequently, weight) of the boxes and their number (since
each outer box requires a Monte Carlo estimation process).
Example.Consider the constraintG2 ¸ ~2 � 1 from the example
in Listing 1 (variable names abbreviated). Performing interval con-
straint propagation with RealPaver [19] � an interval constraint
solver supporting conjunctive, nonlinear inequality constraints
used inqCoral � with the initial input domain G•~2 »� 2•2¼, we
obtained the outer and inner boxes depicted in Figure 1 in gray and
pink, respectively.

In Figure 1, a large region of the domain falls outside the boxes
since it contains no solutions. Hence, the probability of satisfying
the constraint for values in this region is0. Similarly, the probability
of satisfying the constraint with inputs from an inner box is1.
Therefore, uncertainty is bounded within the outer boxes, and
estimation proceeds sampling from their truncated distributions
and aggregating the result via strati�ed sampling.

2.3 Limitations of qCoral
qCoral can produce scalable and accurate estimates for the satis-
faction probability for constraints that 1) have low dimensionality



Yicheng Luo, Antonio Filieri, and Yuan Zhou

or can be reduced to low-dimensional subproblems via constraints
slicing, 2) are amenable to scalable and e�ective interval constraint
propagation, and 3) whose input distribution have CDFs in analyti-
cal form and allows e�cient sampling from their truncated distribu-
tions. These constraints typically do not hold forhigh-dimensional
and correlated input distributions.
Constraint Slicing assumes that all the inputs are probabilistically
independent, with dependencies among variables arising only from
computational operations (e.g. if ¹G¸ ~ ¡ 0º” ” ”). Support for
correlated variables requires changing the dependency relation
to include also all correlated variable pairs. This may reduce the
e�ectiveness of constraint slicing in reducing the dimensionality
of the integration problems.
Interval Constraint Propagation contributes to reducing esti-
mation variance by pruning out large portions of the input domain
that do not contain solutions of a constraint and producing small-
size outer boxes to bound the variance propagated from in-box
local estimates. However, the complexity of this procedure grows
exponentially with the dimensionality of the problem, rendering it
ine�ective when, after constraint slicing, the number of variables
appearing in an independent constraint is still large,e.g. due to cor-
related inputs that cannot be separate. The e�ectiveness of interval
constraint propagation for nonlinear, non-convex constraints also
varies signi�cantly for di�erent formulations of the constraint (e.g.
G2 vs.G� G) and may require manual tuning for optimal results [19].
Strati�ed Sampling requires analytical solutions of the input
CDFs, as well as the ability to sample from truncated distributions.
Both requirements are generally unsatis�able for correlated input
variables, whose CDF cannot be computed in closed form. The lack
of an analytical CDF would require a separate Monte Carlo esti-
mation problem to quantify the probability mass enclosed within
each box and an analysis of how the corresponding uncertainty
propagates through the strati�ed sampling and the composition
operators ofqCoral. Additionally, sampling from a truncated dis-
tribution typically relies on the computation of both the CDF and
the inverse CDF of the original distribution, which is ine�cient
without an analytical form of these functions.

In summary, the main variance reduction strategies ofqCoral
based on interval constraint propagation and strati�ed sampling
are not applicable for all but trivial correlated input distributions.
Constraint slicing can be extended with probabilistic dependencies
among input variables, but this results in smaller dimensionality
reduction, with exponential impact on interval constraint propa-
gation even when the CDFs of correlated inputs can be computed
analytically.

2.4 Importance Sampling
The indicator function in Equation(2) return 1 only within the
regions of the input domain satisfying a constraint (e.g. only within
the circle in Figure 1). When this region encloses only a small
probability mass, direct Monte Carlo methods sampling from the
input distribution ?¹xº may struggle to generate enough samples
that satisfy the constraint, and therefore fail to estimate the quantity
of interest?%� . We discussed before howqCoral uses interval
constraint propagation and strati�ed sampling to prune out regions

of the domain that contain no solutions, sampling within narrower
boxes containing a larger portion of solutions.

An alternative method to improve statistical inference in this
problem isimportance sampling(IS). Instead of sampling from the
input distribution ?¹xº, IS generates samples from a di�erentpro-
posaldistribution � @¹xº � that overweighs the important regions
of the domain,i.e., the regions containing solutions in our case.
Because the samples are generated from a di�erent distribution
than ?¹xº, the computed statistics need to be re-normalized as
in Equation (4):

?%� :=
¹

x
1%� ¹xº?¹xº3x =

¹

x

1%� ¹xº?¹xº
@¹xº

@¹xº3x (4)

�
1
#

#Õ

8=1

1%� ¹x ¹8ºº?¹x ¹8ºº

@¹x ¹8ºº
=: ?̂� ( • wherex ¹8º � @¹xº” (5)

While any distribution@¹xº ¡ 0 over the entire domain guaran-
tees the estimate will eventually converge to the correct value, an
optimal choice of@¹xº determines the convergence rate of the pro-
cess and its practical e�ciency. In our context of estimating the
probability of satisfying path conditions%�, theoptimal proposal
distribution@� ¹xº is exactlythe truncated, normalized distribution
?¹xº satisfying%�,

@� ¹xº =
1

?%�
?¹xº1%� ¹xº”

In general, it is infeasible to sample from@� ¹xº as it requires the
calculation of?%� which is exactly our target. Fortunately, as we
will demonstrate in Section 3.1, a proposal distribution found via
adaptive re�nement can allow us to achieve near-optimal perfor-
mance.

In this paper, we propose a new inference method to estimate the
satisfaction probability of numerical constraints on high-dimensional,
correlated input distributions.Our method does not require analyt-
ical CDFs and can replaceqCoral's variance reduction strategies
to analyze constraints where these are not applicable. Our method
combines results from constraint solving and adaptive estimation to
produce near-optimal proposal distributions aiming at computing
high-accuracy estimates suitable for the analysis of low-probability
constraints.

3 SYMPAIS: SYMBOLIC PARALLEL ADAPTIVE
IMPORTANCE SAMPLING

In this section, we introduce our new solution space quanti�ca-
tion method for probabilistic program analysis: SYMbolic Parallel
Adaptive Importance Sampling (SYMPAIS).

Figure 2: Overview of SYMPAIS.
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