
Service Distribution Estimation for Microservices Using
Markovian Arrival Processes

Runan Wang, Giuliano Casale, and Antonio Filieri

Department of Computing, Imperial College London, UK
{runan.wang19, g.casale, a.filieri}@imperial.ac.uk

Abstract. Building performance models for microservices applications in De-
vOps is costly and error-prone. Accurate service demand distribution estimation
is critical to performance model parameterization. However, traditional service
demand estimation methods focus on capturing the mean service demand, disre-
garding higher-order moments of the distribution. To address this limitation, we
propose to estimate higher moments of the service demand distribution for a mi-
croservice from monitoring traces. We first generate a closed queueing model to
abstract a microservice and model the departure process at the queue node as a
Markovian arrival process. This allows formulating the estimation of service de-
mand as an optimization problem, which aims to find the optimal parameters of
the first multiple moments of the service demand distribution based on the inter-
departure times. We then estimate the service demand distribution with a novel
maximum likelihood algorithm, and heuristics to mitigate the computational cost
of the optimization process for scalability. We apply our method to real traces
from a microservice-based application and demonstrate that its estimations lead
to greater prediction accuracy than exponential distributions assumed in tradi-
tional service demand estimation approaches.

Keywords: Service demand distribution · Markovian arrival process · Maximum
likelihood estimation · Queueing models · Performance

1 Introduction

DevOps has been widely adopted in industry, becoming an important part of today’s
software development methodologies [2]. Compared with traditional software develop-
ment, DevOps exploits a high degree of automation throughout the whole pipeline to
shorten the development life cycle and deliver high-quality applications.

While DevOps provides software engineers with advantages like frequent releases
of new features and fast resolution of technical issues, how to keep a speedy pace of de-
livery to production and ensure the quality of the software at the same time remains an
open challenge [3]. Performance models can help to describe the system with a simpli-
fied abstraction, further enabling simulation and forecasting for use by both developers
and operators. Stochastic models such as queueing networks [14], layered queueing
networks [13], Petri nets [20] are widely used to represent web applications. Instead,
software architecture models are appropriate to describe changes in software structures
and resources [21].



2 Runan Wang, Giuliano Casale, and Antonio Filieri

To build performance models in the context of DevOps, it is important to consider
both architectural and analytical models. Existing methods for generating architecture-
level models like UML [28] and Palladio Component Model [7] often rely on manual
analysis and domain knowledge, which cannot satisfy the requirement of high-degree
automation in DevOps. In addition, the description languages of architectural models
in previous works are independent of deployment, which brings complexity to frequent
deployment and automatic calibration of performance models responding to new al-
ternatives during this process. Compared to the above models, TOSCA [4] provides a
directed topological description of applications that allows deployment and lifecycle
management via dedicated orchestrators. As such, TOSCA is increasingly widespread
to describe microservice-based applications.

To enable simulation and prediction with TOSCA, model-to-model transformations
are required to decompose an architectural model into an analytical model that can be
solved with analytical solvers via simulation. Among the parameters of a performance
model generated in this way, service demand is a critical aspect that should be speci-
fied [8, 33]. Service demand generally refers to the cumulative time a request spends
receiving service from system resources, such as CPU or disk, accumulated over all
visits. The accuracy of service demand specification is decisive for the predictive ef-
fectiveness of performance models. Therefore, it is critical to specify accurate service
demand distribution in TOSCA models.

Service demand can be estimated with measurements of CPU utilization and re-
sponse time collected via system monitoring. Several different approaches for service
demand estimation have been proposed over the years, such as utilization law [10],
response time approximations based on linear regression [26], non-linear optimiza-
tion [34] and also machine learning methods [12]. However, most of the existing ap-
proaches for service demand estimation mainly focus on estimating the mean service
demand. Restricting attention to the mean can limit the accuracy of service demand
estimation. This issue as the higher-order moments can affect the accuracy of critical
metrics such as higher percentiles of the response time.

In this paper, we propose to estimate the service demand distribution. To learn the
service demand, we first represent a microservice as a closed queueing system, with
the finite population representing the maximum parallelism level within the microser-
vice, and in which the service demand for queue nodes is characterized with a general
acyclic phase-type (APH) distribution. After generating the continuous-time Markov
chain (CTMC) for this model, we filter the departure transitions into a Markovian ar-
rival process (MAP) to characterize the departure process at the queue node. The prob-
lem of service demand estimation can then be formulated as an optimization problem
to infer the service demand distribution that maximizes the likelihood of the collected
trace data with the departure process MAP. The optimal parameters of the service de-
mand distribution can be obtained from matching moments of the APH distribution by
a global search with maximum likelihood estimation.

To address the high cost of global optimization, we then propose a heuristic esti-
mation method. In this method, the problem of service demand distribution estimation
is divided into sub-problems of fitting different moments, using a collection of estima-
tion methods. The required given data for fitting parameters for estimation with MAP



Service Distribution Estimation for Microservices Using Markovian Arrival Processes 3

consists of the inter-departure times, response times and the time of departure instant,
which can be directly collected with network traffic sniffing from pairs of arrival and
departure events. To evaluate our method, we apply it to the analysis of real traces from
deploying and monitoring a microservice-based application. The results show that our
method can fit the distribution of real traces with a high degree of accuracy.

The rest of the paper is organized as follows. In Section 2, we recall necessary
background and definitions. In Section 3 the inter-departure time model and problem
formulation are introduced. In Section 4, we discuss our proposed service demand dis-
tribution estimation method based on global optimization with maximum likelihood. In
Section 5, we introduce the heuristic method for service demand distribution estima-
tion. We present our experimental results in Section 6. Related work is summarized in
Section 7. Finally, we draw conclusions in Section 8.

2 Preliminaries

Acyclic Phase-type Distribution. A phase-type (PH) distribution [23] can be defined
as the distribution of absorbing time in a continuous-time Markov chain (CTMC) with
finite states f1; 2; :::;m;m+ 1g, where the first m states are transient and the last state
is absorbing. The infinitesimal generator matrix of the CTMCG is

G =

�
T t
0T 0

�
The sub-generator T with dimension m�m specifies the transition rate from state i to
state j. We also define t = �Te, where e denotes a column vector of 1 with appropriate
dimension. We can further describe the stationary distribution of the transient states
with � = (�1; �2; : : : ; �m), subject to �e = 1; �i � 0. A PH distribution may thus be
compactly specified as PH(�;T ).

An acyclic PH (APH) distribution [5] is a subset of PH distributions with acyclic
underlying Markov chain. This implies that any state in the underlying Markov chain
cannot be visited more than once before absorption. If a random variable Y has APH
distribution with parameter �0 and T 0, we write Y � APH(�0;T 0).
Service demand distribution modeling. In this paper, the service demand distribution
is modeled as an APH distribution. The parameters of APH(�;T ) can be obtained
with various PH distribution fitting methods [15]. In this work, we will use the method
of moment matching, which can fit the parameters to match an arbitrary number of
moments of a reference on empirical distribution. In particular, we consider using the
first three moments to study the APH distribution for service demand. The third moment
(skewness, Sk) is considered for its characterization on the fitting performance of the
end of the tail.

Sk =
E[(X � �)3]

(E[(X � �)2])3=2
(1)

In equation (1), � denotes the mean value. The first three moments can be described
with the mean value (�), the squared coefficient of variance (SCV, c2) and the skewness
(Sk).

E[X2] = (1 + c2)�2 (2)



4 Runan Wang, Giuliano Casale, and Antonio Filieri

E[X3] = Sk(c2)3=2�3 + 3�3c2 + �3 (3)

Thus, we can write the service demand distribution as function of the first three mo-
ments E[X]; E[X2] and E[X3] with parameters �; c2, and Sk.
Markovian Arrival Processes. MAPs [22] are able to incorporate correlations between
successive inter-arrival times. An n-state MAP consists of two stochastic processes,
referring to a counting process and a phase process modeled by a finite state (n states)
CTMC with infinitesimal generator Q. Let D0 be a matrix associated with transitions
without arrivals with non-negative off-diagonal elements; D0 and D1 satisfy Q =
D0 +D1 and (D0 +D1)e = 0.

3 Problem formulation

We propose to observe the departure process of a microservice and determine param-
eters of service demand distribution, modeled as an APH, using maximum likelihood
estimation.

Microservice-based applications can be abstracted as a queueing model. Here we
take a simple microservice as an illustrating example1. This is a simple microservice
exposing a body mass index (BMI) calculation service. The calculation service is a
minimalistic microservice that only receives requests and posts responses without ex-
ternal processing. We generate a closed workload to simulate the microservice clients
in the system – the structure of the example is given in Figure 1(a). Figure 1(b) illus-
trates the analytical model for the application, consisting of a closed queueing network
describing the microservice buffer and server, as well as the think time of clients. The
model features N concurrent users, each modeled as a job. Scheduling could be either
first-come first-served (FCFS) or Processor-sharing (PS) order depending on the imple-
mentation details of the web server handling the requests within the microservice. We
assume exponentially distributed user think times at the delay station. The problem is to
determine the APH service demand distribution in the queueing station. Note that since
we focus on a single class of jobs, the model admits a product-form solution for the
steady-state distribution, while no specific product-form simplifications are available to
analyze the departure process of this queue. As such, the service distribution identifica-
tion problem does not satisfy a simple analytical closed-form to conduct inference.
Departure process modeling with MAP. Referring to [1], the inter-event times in
queueing models can be captured with a quasi birth-and-death process (QBD). We
can generate the infinitesimal generator Q of the underlying CTMC and then filter the
events associated with job departures from Q as D1. That is, all departure transitions
from the queue are tagged in D1. Then, a MAP can be used to model the departure
process with representationD0 andD1, whereD0 = Q�D1.

We consider a MAP = fD0;D1g that represents the departure process of the
queueing station, our objective is to estimate the parameters for service demand dis-
tribution as APH(�;T ) from the observable inter-departure times (IDTs). We denote
the time between two successive departure events i and i� 1 as Xi = ai � ai�1. Thus,
the IDTs of jobs areX = [X1; X2; : : : ; Xn�1]. Since the departure process is modeled

1 https://github.com/go-chassis/go-bmi



Service Distribution Estimation for Microservices Using Markovian Arrival Processes 5

UserUser

API
Gateway

API
Gateway MicroserviceMicroservice

(a)

Think timeThink time

MicroserviceMicroservice

(b)

Fig. 1: The structure (a) and the queueing model (b) for of the example applicaton

as a MAP, the IDTs follows a PH distribution PH(�;D0), where � = �(�D0)�1D1

indicating the stationary distribution of the embedded chain. If D0 is acyclic, then the
PH distribution specializes into an APH one. This distribution produces an interval sta-
tionary initialization for the MAP.

For the MAP described above, the joint probability density function (PDF) of IDTs
X = [X1; : : : ; Xn] is

f(X) = �eD0X1D1e
D0X2D1 : : : e

D0XnD1e (4)

For computational convenience, we assume that the given departure events are in-
dependent. The logPDF of the IDTs can be approximated as

log f(X) =

nX
i=1

log(�eD0XiD1e) (5)

In general, let � be the parameter set of the service demand distribution to be esti-
mated. The log-likelihood for the IDTs is

log f(�jX) =

nX
i=1

log(�eD0(�)XiD1(�)e) (6)

In (6), D0(�) and D1(�) describe the functional dependencies between D0, D1

and the service demand distribution parameters � such as its moments, e.g., �, c2, and
Sk mentioned in Section 2. Then our problem of service demand distribution estimation
can be formulated as finding the parameters that maximize the log-likelihood of the
IDTs measured from the monitoring traces.

fobj(�) = arg max
��0

log f(Xj�) (7)

4 Global optimization based estimation

The parameter estimation of service demand distribution is based on observations of
real system trace. In this paper, we consider a finite observation with n samples. Our
measured observation consists of the IDTs, the timestamps of each departing instant
and the response times.



6 Runan Wang, Giuliano Casale, and Antonio Filieri

1 50 100 150 200 250 300
Number of users

100

102

104

106

108

N
u
m

b
e
r 

o
f 

st
a
te

s

PS
FCFS

Number of phases = 3

(a)

2 3 4 5 6
Number of phases

102

104

106

108

1010

N
u
m

b
e
r 

o
f 

st
a
te

s

PS
FCFS

Number of users = 100

(b)

Fig. 2: The number of states in the CTMC state space with PS and FCFS

Data preprocessing. For a real system, there could be a large number of requests from
the users arriving within a very short period. If we directly take all of the samples in the
trace, it could be quite time-consuming to calculate the likelihood function in (6), due
to the cost of evaluating the matrix exponential.

To address the above issue, we observe that the inter-departure times of jobs can
be grouped into different patterns. In order to accelerate the execution times, we apply
clustering based on k-means [17] to partition the IDTs to obtain K groups of data
with cluster centroids C = [C1; C2; : : : ; CK ]. Then, the log joint PDF in (5) can be
approximated based on the IDT clusters as

log f(C) =

KX
i=1

Li log(�eD0CiD1e) (8)

where Li denotes the number of points in cluster i.
CTMC state space explosion. Increasing of the number of concurrent users, the state
space of the CTMC can easily suffer state-space explosion. Assume a single-server
queue where the service demand SD of the queue node is APH distributed and a de-
lay node as shown in the example in Figure 1, and there are N users in the queueing
network. First, we consider the jobs in the queue are processed with a first-come-first-
served (FCFS) order. Only one job can be served by the server at one time. Let P
denote the number of phases in the service process, i.e., the number of columns in �.
The number of states in the state space is

s = N � P + 1 (9)

Instead, if the server follows a processor sharing (PS) scheduling strategy, i.e., multiple
jobs can be served simultaneously, the number of states in the state space is

s =

NX
i=0

(N + 1� i)
�
i+ P � 2

i

�
(10)

Compared to FCFS, we can see that the state space for PS grows combinatorially, as
shown in Figure 2, making the analysis of the CTMC intractable.



Service Distribution Estimation for Microservices Using Markovian Arrival Processes 7

To mitigate the complexity of dealing with PS scheduling, we propose to capture
the behaviours of the original model with a simpler model. We focus on the mean queue
length that can be approximated by using mean-value analysis (MVA). Instead of con-
sidering all the individual jobs circulating in the delay and queue nodes as usual, we
propose a modified model with only an estimated number of jobs N

′
perpetually loop-

ing within the queue.

N
′

=
N � 1

N
E[U(N)] (11)

Let E[U(N)] denote that there are averaged E[U(N)] users at the queue when N users
in the system. Note that the number of jobs N

′
looping in the new model is decided by

the expected number of users at an arrival instant in the queue based on Schweitzer’s
Approximation [31].

For a real system with a large number of users, this approximation can lead to a
significant reduction of the computational cost, while providing adequately accurate
results. For example, N

′
= 2 is obtained with N = 100 and a 3-phase service distribu-

tion, the number of states in the state space is only 10, which is much smaller compared
to the one shown in Figure 2(a) with N = 100 under PS schedule.
MLE for service demand distribution. Our objective is to search optimal parameters
for approximating service demand distributions. Given the observed trace data, a com-
mon approach for parameter estimation is maximum likelihood estimation (MLE) [24],
which casts the estimation as a global optimization problem. We propose an estimation
method that combines MLE with simulations of queueing models to approximate the
APH distribution for service demand.

Algorithm 1 describes the implementation of this method in details. The algorithm
requires a set of clustered IDTs and the searching boundaries. In each iteration, the
algorithm generates a set of moments satisfying the bound constraints and then the APH
distribution is fitted from the current moments. The conditions of convergence for the
algorithm is setting as follows. The maximum number of objective function evaluations
is 1e10, and iterations will end when the last step tolerance is smaller than 1e-8. For
moment matching we use BuTools package [16], pointing to APHFit in Line 3. Note
that we need to satisfy that the APH distribution is feasible with given parameters, i.e.,
both � and T are not empty or zero. After obtaining the service demand distribution
SD, a queueing model is generated with a queue node of SD. The current queueing
model can be solved by analyzing the underlying CTMC, obtaining the infinitesimal
generator Q. By analyzing the transitions in Q, the transition rates of departure events
on the queue node can be filtered forD1 as shown in Lines 6-8.

In Algorithm 1, the optimal parameters of service demand distribution are obtained
with the maximum likelihood value of the monitoring traces. However, the computation
of the infinitesimal generator involves the computation of a matrix exponential, which
is computationally expensive and rises numerical instability. To mitigate these issues,
we use CTMC uniformization [29] which is well-known to be an effective numerical
method for computing transient measures involving matrix exponential. For transient
analysis, uniformization techniques can be applied with sub-generator D0 and the ini-
tial distribution � of the MAP. Since the transient rate in D0 of a real system could
be large, to guarantee stable calculations, we adopt the scaling method from [32], in-



8 Runan Wang, Giuliano Casale, and Antonio Filieri

Algorithm 1 Global optimization based estimation method

Input: C← Set of clustered inter-departure times [c1; c2; : : : ; cn; l1; l2; : : : ; ln], where ci is the
centriod value and li is the number of points in cluster i.
LB ←searching lower bound
UB ←searching upper bound

Output: SD← Estimated service demand with APH distribution
1: Random initialize M0 ← [m1;m2;m3]; LB < M0 < UB
2: while Not converged do
3: Service demand distribution APH(�;T )← APHFit[m1;m2;m3]
4: if APH(�;T ) is feasible then
5: Generate a queueing network model QNM with service demand APH(�;T )
6: Q← solve(QNM )
7: FilterD1 from the infinitesimal generatorQ
8: MAP← {Q−D1;D1}, generate �
9: for i = 1 to n do

10: � ← ctmc uniform(�;Q−D1; ci)
11: L← L+ log(�D1e)li
12: end for
13: end if
14: end while
15: Get optimal parameter set [m1;m2;m3] with maximum likelihood value
16: return SD ← APHFit[m1;m2;m3]

volving a scaling factor q to avoid floating-point errors. In Line 10, the scaling CTMC
uniformization method is defined as ctmc uniform, which takes �, Q � D1 and the
centroid of the cluster as the input. The approximated transient probability is obtained
as � for �eD0 . Then the log-likelihood value can be computed using (8) at Line 11.

5 Heuristics-based estimation

As illustrated in Algorithm 1, the global optimization method for service demand dis-
tribution estimation needs to consider a large search space. It could be time-consuming
to obtain the optimal parameter set maximizing the likelihood value. The method pre-
sented in this section estimates the parameters sequentially, rather than jointly, offering
a heuristic estimation that trades accuracy for speed.
Mean service demand estimation. The mean value of service demand can be effi-
ciently estimated based on performance measurements from monitoring traces. We re-
fer to the work in [26], which allows estimating the expected value of service demand
with queue length and response times. Both queue length and response times are easily
measured with system monitoring. Since in this work we target the departure process,
the input dataset of the estimation method contains the following data by calculating
from system monitoring at departing occurrence.

– The timestamp of a job departing from the queue node (DT )
– The response times from the monitoring traces (R)
– The queue length seen upon arrivals (A)



Service Distribution Estimation for Microservices Using Markovian Arrival Processes 9

1 5 10 15 20 25 30 35 40
Queue length seen upon arrivals

0

2

4

6

8

10

12

c2

(a)

1 5 10 15 20 25 30 35 40
Queue length seen upon arrivals

0

2

4

6

8

10

12

c2

(b)

Fig. 3: c2 conditional on the queue length seen upon arrivals for simulation (a) and the
real trace (b)

Considering a single class of jobs in the system, letN be the size of the population in
the closed queueing network. Therefore, the mean service demand E[D] for the single-
class case can be estimated as [26]:

E[D] =
E[R]

1 + E[A]
(12)

whereE[R] andE[A] is the expected value of response times and the queue length seen
upon arrivals, respectively.
SCV estimation. To estimate the second moment of service demand, we investigate
the state-dependent behavior of the system. The estimation formulation is derived from
the SCV on the mean queue length seen upon arrival. In a queueing system, the re-
sponse time of a job is related to the number of jobs in the queue node either waiting or
receiving service. We propose to estimate c2 using the following heuristic expression

c2 = max
E[(Rij � E[Ri])

2]

E[Ri]2
(13)

where i is a value for the length of queue seen upon arrival, with i = 0; : : : ;max(A).
Ri denotes a set of response times of which the queue length seen upon arrival is i, and
Rij denotes the jth response time belonging to Ri. In detail, at each departure instant,
we can collect the response time of the current completed job and the number of jobs
remaining in the queue. Then the queue length is sorted and the response times can be
grouped according to different numbers of the queue length as Rij .

To demonstrate the accuracy of the approximation for SCV, we conduct an experi-
ment with N = 100. We analyze real trace data from monitoring and compare the c2 of
real traces to the simulated queueing model with estimated parameters based on MLE.
We can see from Figure 3(a) that the c2 conditional on the queue length first increases
to the maximum and then decrease with the growth of queue length. The same pattern
can be also observed for the real trace as shown in Figure 3(b). The simulated c2 value
is 8.3. It can be seen that the max(c2) of the simulation is close to the one for the real
trace with c2 = 11:2.



10 Runan Wang, Giuliano Casale, and Antonio Filieri

Algorithm 2 Heuristics based estimation method
Input: C← Set of clustered inter-departure times [c1; c2; : : : ; cn; l1; l2; : : : ; ln], where ci is the

centriod value and li is the number of points in cluster i.
R← Set of response times [r1; r2; : : : ; rn]
DT ← Set of times on the departure instant [dt1; dt2; : : : ; dtn]
Sk = [Sk1; Sk2; : : : ; Skj ]← searching set of Sk

Output: SD ← Estimated service demand with APH distribution
1: Compute A from DT and R
2: � ← meanEstimate(A;R)
3: c2 ← scvEstimate(A;R)
4: for i = 1 to j do
5: Compute the first three moments [m1;m2;m3] from m, c2 and Ski

6: APH(�;T )← APHFit[m1;m2;m3]
7: if APH(�;T ) is feasible then
8: Repeat execution of lines 5 to 12 in Algorithm 1
9: end if

10: end for
11: Get optimal skewness set of service demand, Sk ← Ski with max(L)
12: Compute the first three moments [m1;m2;m3] from �, c2 and Sk

13: return SD ← APHFit[m1;m2;m3]

Heuristic service demand distribution estimation. Our heuristic method to accelerate
the MLE estimation is shown in Algorithm 2. Compared to the global optimization in
Algorithm 1, the heuristic-based method is used to estimate the service demand distri-
bution with a series of methods to fit the first three moments, including mean service
demand (�), SCV (c2) and the skewness (Sk) estimation.

The algorithm requires a set of IDTs, the departure times, the response time of each
job, and the queue lengths seen upon arrivals. In Line 1, we first compute the arrival
times with the departure times DT and response times R and then calculate the queue
length seen upon arrivals for each job. The mean service demand is estimated based on
response times and the queue length seen upon arrivals. Then the algorithm estimates
c2 by (13). The only search parameter for our method now is the skewness Sk. Here we
perform MLE on the departure process with Equation (6). As in the search-based global
optimization, we first generate a set of candidate skewness values Sk = [Sk1; Sk2; : : : ].
For each Ski, we generate a queueing model with corresponding service demand and
then calculate the likelihood value as Lines 5-12 in Algorithm 1. The algorithm will
search on all candidates in the set, and the process is repeated with multiple candidate
points for robustness. The estimated result of the skewness is finally decided on the
max likelihood value. Therefore, the final result is obtained with a collection of three-
parameter estimation methods.

6 Evaluation

This section introduces the experimental setup and evaluation metrics, and a compari-
son of our method against the baseline algorithms.



Service Distribution Estimation for Microservices Using Markovian Arrival Processes 11

Table 1: Workload pattern
CPU level Low Medium High
CPU utilization (U ) 33% 43% 95%
Number of users (N ) 50 100 300

6.1 Experimental setup

To evaluate the proposed service demand distribution estimation, we conduct several
experiments and compare the results to our baseline algorithm using an open-source
microservice-based application called Sock Shop2. Sock Shop consists of 13 different
services and all services communicate using REST APIs over HTTP. We use Docker
Compose for the multi-container orchestration. We then generate closed workloads with
different intensity using Locust3. In the experiment, we target a service that does not
interact with a database, which avoids indirect drifts in the response time due to the
state of the database.

The experimental environment is as follows. For the deployment of the application,
we use a server running Ubuntu 16.04.7, and our target service is pinned to a separate
CPU core. Locust is running on 6 different servers, including one host node and 5
distributed nodes to simulate the concurrent users. We experimented with populations
of different numbers of users to assess the corresponding CPU utilization level as shown
in Table 1.

In all the following experiments, the users’ think time is exponentially distributed
with a mean of 0.1 seconds.

We conduct experiments with each population in Table 1 and capture the network
traffic with a dockerized tcpdump that is triggered over HTTP. During the experiments,
we monitor HTTP traffic on the source and destination nodes of our target service. Then
the traffic data is parsed to extract the request and response information of each request.
For each different population size, we collect 10,000 HTTP request and response pairs
to build up the trace dataset. Every dataset consists of the response time of each request
and the time of departure instant.
Baseline algorithm. The service demand is usually modeled as exponential with the
estimated mean value [33]. In our experiments, we also fit as baseline an exponential
distribution for service demand.
Metrics. Since the real service times of systems are usually difficult to measure, we
opt to measure the response time via monitoring and use the complementary cumula-
tive distribution function (CCDF) of the response times as our metrics. We construct
the queueing model parameterized with the estimated service demand distribution and
use the simulation-based JMT solver in LINE [27] to compute the corresponding re-
sponse times to compare with. Thus, the only difference between the baseline and our
experiments is the service demand distribution at the queueing node.

2 https://microservices-demo.github.io/
3 https://locust.io/



12 Runan Wang, Giuliano Casale, and Antonio Filieri

x - Response time [s]

P
r(

X
>

x)

(a)

E
xe

cu
tio

n
 t
im

e
 [
s]

Number of clusters

(b)

Fig. 4: The CCDF of response times (a) and the execution times (b) of maximum like-
lihood estimation under different number of clusters

6.2 Data preprocessing and clustering

To demonstrate the trade-off between computational complexity and the approximation
accuracy due to the choice of the number of clusters K, we consider a simulated exper-
iment with 50 users in a single-server queueing system. In this experiment, we estimate
the service demand distribution with the original data and clustered data for different
values of K. Figure 4 shows the simulation results. It can be observed from Figure 4(b)
that with clustered IDTs the execution time of departure process MAP modeling and
log-likelihood calculation drops by almost 33% compared to the initial execution time
with the whole trace. The accuracy of parameter estimation with the clustered data is
evaluated in Figure 4(a) by means of CCDF diagrams. While small values ofK lead to a
coarse approximation, increasing K the CCDF for the clustered data rapidly converges
to the CCDF estimated from the whole dataset without clustering. As can be noted from
Figure 4(a), the curves become indistinguishable for K � 100. We can thus conclude
that our clustering heuristics does not significantly reduce the accuracy of the estima-
tion for K large enough (K � 100 in our experiment), while significantly reducing the
computational cost of the estimation.

6.3 Numerical experiment results

We conduct the following numerical experiments to assess the effectiveness of our
global-search based method for the service demand distribution estimation. We first
generate single-server queueing models that can simulate the behaviours of a simplis-
tic microservice, setting different known values for service demand at the queue node.
Then we generate samples of inter-departure times by simulating. The mean service
demand � is fixed at 0:7 and different SCV are selected from c2 2 f0:5; 1; 4; 16g. After
generating sample traces via simulation, we execute Algorithm 1 and compare the esti-
mated SD with the known values. We also compare with the baseline algorithm on the




